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ABSTRACT

High dimensional data is modeled using low-rank subspaces,
and the probability of misclassification is expressed in terms
of the principal angles between subspaces. The form taken by
this expression motivates the design of a new feature extrac-
tion method that enlarges inter-class separation, while pre-
serving intra-class structure. The method can be tuned to
emphasize different features shared by members within the
same class. Classification performance is compared to that of
state-of-the-art methods on synthetic data and on the real face
database. The probability of misclassification is decreased
when intra-class structure is taken into account.

Index Terms— subspace, principal angle, classification,
feature extraction

1. INTRODUCTION

Data that is nominally high dimensional often exhibits a low
dimensional geometric structure. For example, frontal images
of human faces are recorded by more than 1000 pixels, but
can be represented by a 9-dimensional harmonic subspace [1].
Motion trajectories of a rigid body might be recorded by hun-
dreds of sensors, but must intrinsically be represented by a 3-
dimensional subspace. There are many more examples where
a low-dimensional subspace model captures intrinsic geomet-
ric structure and where features extracted from the representa-
tion are very effective in typical machine learning tasks such
as classification and clustering [2, 3].

Feature extraction and dimension reduction are of great
interest to both the signal processing and machine learning
communities. There is considerable work in the signal pro-
cessing community dedicated to the design and analysis of
dimension reduction provided by compressive sensing ma-
trices [4, 5]. There has been much interest within machine
learning on the discriminative power of linear and non-linear
embeddings [3, 6]. The combination of subspace representa-
tion with information theoretic analysis [7] has led to a vari-
ety of methods for dimension reduction that are able to extract
task-specific features [8], for signal reconstruction [9], classi-
fication [10, 11], etc.

We consider the problem of discriminating K classes,
each of which is approximated by a low-rank linear subspace.

When the approximation provided by the subspace model is
sufficiently accurate, we show that the error probability of an
optimal classifier is determined by the product of the sines of
the principal angles between subspaces. This result motivates
the design of a new method, TRAIT, that extracts low dimen-
sional discriminative features while preserving intra-class
structure. In contrast to a state-of-the-art discriminative fea-
ture extraction method, LRT [3], which compresses the data
within classes, TRAIT is tunable to preserve user selected
intra-class structure. Competitive classification accuracies
are achieved with TRAIT features alone on both synthetic
and real data. However, classification based on a combination
of LRT and TRAIT features is superior to classification based
on only one of these approaches.

2. PRINCIPAL ANGLES

Consider two subspaces X and Y of Rn with dimensions `
and s respectively, where ` ≤ s. Denote the principal an-
gles between X and Y by θ(1), . . . , θ(`), defined recursively
as follows

θ(1) = minx1∈X ,y1∈Y arccos
(

x>1 y1
‖x1‖‖y1‖

)
,

...

θ(j) = min xj∈X ,yj∈Y
xj⊥x1,...,xj−1

yj⊥y1,...,yj−1

arccos

(
x>j yj
‖xj‖‖yj‖

)
, j = 2, . . . , `

The vectors x1, . . . , x` and y1, . . . , y`, are called principal
vectors. The dimension of X ∩Y is the multiplicity of zero as
a principal angle. It is straightforward to compute the princi-
pal angles by calculating the singular values of X>Y , where
X and Y are orthonormal bases for X and Y respectively.
The singular values of X>Y are cos θ(1), . . . , cos θ(`).

3. ERROR PROBABILITY OF CLASSIFYING
LINEAR SUBSPACES

We model K-class classification as a hypothesis testing prob-
lem, where the k-th hypothesis is

Hk : x ∼ N (0,Σk), 1 ≤ k ≤ K. (1)
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The covariance matrix Σk is assumed to be approximately
low-rank and we are interested in the error probability of the
Maximum A Posteriori (MAP) classifier, which is optimal.

3.1. Upper Bound of Error Probability

We focus on the case K = 2, since the generalization from
two to multiple classes has been studied extensively [12, 13].
Denote the signal subspaces of these two classes as X and
Y respectively. For simplicity we assume that the two hy-
potheses are equiprobable and that dim(X ) = dim(Y) = d.
This restriction is consistent with data sets of faces (d = 9)
and motion trajectories (d = 3). The principal angles (in as-
cending order) between X and Y are θ(1), . . . , θ(d). Suppose
dim(X ∩ Y) = r so that θ(1) = · · · = θ(r) = 0. It follows
that the corresponding covariances Σ1,Σ2 have the following
SVD:

Σ1 = U1,oΛ1,oU
>
1,o + U1,nΛ1,nU

>
1,n + σ2U1,⊥U

>
1,⊥,

Σ2 = U2,oΛ2,oU
>
2,o + U2,nΛ2,nU

>
2,n + σ2U2,⊥U

>
2,⊥,

(2)

where both U1,o ∈ Rn×r and U2,o ∈ Rn×r span X ∩ Y with
singular values Λ1,o and Λ2,o. U1,n ∈ Rn×(d−r) spans X\Y
with singular values Λ1,n. And U2,n ∈ Rn×(d−r) spans Y\X
with singular values Λ2,n.

In the next section, we will sometimes useUk , [Uk,o, Uk,n]
to denote the signal subspace of class k. Finally U1,⊥, U2,⊥ ∈
Rn×(n−d) span the noise subspaces with a variance of σ2. We
now characterize the behavior of the classification error in the
following theorem:

Theorem 1. Let K = 2 in (1) and let Σ1,Σ2 be as defined
in (2). As the variance σ2 → 0, the error probability, Pe, of
the optimal classifier is upper bounded by

Pe ≤ P̄e = cr(σ
2)

d−r
2

(∏d
j=r+1 sin2 θ(j)

)− 1
2

+ o(σd−r).

(3)
The individual signal energies Λ1,n, Λ2,n, Λ1,o, Λ2,o and the
intersection dimension r determine

cr = 2d−
r
2

[
pdet(U1,oΛ1,oU

>
1,o + U2,oΛ2,oU

>
2,o)√

det Λ1,o det Λ2,o

·
√

det Λ1,n · det Λ2,n

]− 1
2

where pdet(·) denotes the pseudo-determinant.

Remark 1. This misclassification probability has order d−r
2 .

That is, limσ2→0
log P̄e

log σ2 = d−r
2 . The larger the principal an-

gles, the smaller is the upper bound. And misclassification
probability decreases most rapidly when the two classes are
disjoint (r = 0).

4. STRUCTURE-PRESERVING AND
DISCRIMINATIVE FEATURE EXTRACTION

In Theorem 1, it is the product of the sines of the principal
angles that determines the performance of the MAP classifier.

This motivates an approach to learning features when labels
are available from training data. The next section describes
how to learn a linear transform that increases separation be-
tween classes, allowing for the possibility that the transform
reduces dimensionality.

4.1. TRAIT Algorithm

We denote the collection of all labeled training samples as
X = [X1, . . . , XK ] ∈ Rn×N , where columns in the sub-
matrix Xk ∈ Rn×Nk are samples from the k-th class. The
signal subspace of Xk is spanned by the orthonormal basis
Uk defined above. The linear transform A ∈ Rm×n (m ≤
n) is designed to maximize separation of the subspaces
AU1, . . . , AUK .

The largest separation is achieved when (AUj)
>(AUk) =

0 for all j 6= k. In this case, all the principal angles are
π/2. One could use SVD to compute the Uk’s first and then
learn A. However, in practice we may want to avoid pre-
computing the Uk’s. This can be achieved by encouraging
(AXj)

>(AXk) = 0 for all j 6= k.
We also require the transform A to preserve some specific

characteristic or trait of each individual class. For example,
we may target (AXk)>(AXk) = X>k Xk for all k, so that the
original intra-class data structure (with noise) is preserved.
Given access to denoised signal, X̃k, we might instead tar-
get (AXk)>(AXk) = X̃>k X̃k again for all k. In this case,
the intra-class dispersion due to noise is suppressed. Thus,
the Gram matrix T of the transformed signal can be designed
to target preservation of particular intra-class structure. We
formulate the optimization problem as

min
A∈Rm×n

‖(AX)>(AX)− T‖2F . (4)

The block diagonal structure of the target Gram matrix T pro-
motes larger principal angles between subspaces. At the same
time the diagonal blocks can be tuned to different character-
istics of individual classes. Here we only consider

T = diag{X>1 X1, . . . , X
>
NXN}, (5)

to demonstrate proof of concept. We refer to this approach as
the TRAIT algorithm since it achieves Tunable Recognition
Adapted to Intra-class Targets.

It is possible to minimize the objective in (4) by first solv-
ing ‖X>PX − T‖ = 0 for P , and then factoring P as P =
A>AwhereA ∈ Rm×n. However whenm < n, such a rank-
m decomposition may not exist since this P is not guaran-
teed to be rank deficient. Considering the above fact, here we
solve (4) via gradient descent as summarized in Algorithm 1.

4.2. Related Methods

Linear Discriminant Analysis (LDA) is a classical feature ex-
traction method which assumes each class to be Gaussian
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Algorithm 1 TRAIT for feature extraction

Input: labeled training samples X = [X1, . . . , XK ], target
dimension m, (m ≤ n), target Gram matrix T .

Output: feature extraction matrix (transform) A ∈ Rm×n
1: Initialize A = [e1, . . . , em]>, where ei is the i-th stan-

dard basis.
2: while stopping criteria not met do
3: Compute gradient

G = A(XX>A>AXX> −XTX>).

4: Choose a positive step-size η and take a gradient step

A← A− ηG.

5: end while

distributed. It achieves better performance on face recogni-
tion tasks than does PCA [14]. LDA does not assume near
low-rank structure of the covariances, and therefore consid-
ers a different data geometry than the one here studied. Re-
cently, methods of feature extraction based on random pro-
jection have been developed and successfully applied to face
recognition [15]. The random projection is designed to pre-
serve pairwise distances between all data points uniformly
across class labels [16].

More recently, the Low-Rank Transform (LRT) has been
proposed as a method of extracting features [3]. It enlarges
inter-class distance while suppressing intra-class dispersion.
LRT uses the nuclear norm, ‖AXi‖∗, to measure the disper-
sion of the (transformed) data. The transform A is

arg min
A∈Rm×n:‖A‖2≤c

N∑
i=1

‖AXi‖∗ − ‖AX‖∗. (6)

Note that LRT takes no account of intra-class structure.

5. EXPERIMENTAL RESULTS

We compare TRAIT with the methods discussed above on
both synthetic and measured data. On synthetic data, since
the distribution of each class is exactly known, we use a
MAP classifier to assess the effectiveness. On measured
data, we use the Nearest Subspace Classifier (NSC) in-
stead. The NSC infers the class label of a test datum x as
arg mink ‖x − UkU>k x‖ where Uk is the orthonormal basis
of the k-th signal subspace that can be learned from training
data. We do not use a MAP classifier since in most real ap-
plications, the distribution of each class is unknown. Even
if we assume the distribution to be Gaussian, the number of
training samples may be too small to accurately estimate its
covariance. On the other hand, NSC only requires the number
of training samples to be larger than the assumed subspace

dimension. It has been effectively applied in [17, 18] and is
reasonable to serve as a benchmark.

5.1. TRAIT on Synthetic Data

The synthetic dataset has parameters n = 10, d = 1 and K =
3. Σk = UkU

>
k + 10−2Uk,⊥U

>
k,⊥(k = 1, 2, 3), where Uk

is a normalized n-vector with i.i.d. Gaussian random entries.
Samples of the k-th class are i.i.d drawn from N (0,Σk). For
each class, 100 samples are used for learning the transform
and 10000 are used for testing. On the training data, we learn
the transform respectively via LDA, LRT, and TRAIT with
target dimension m = 3, . . . , 10. Then on each test datum,
we apply the learned transforms as well as random projection
(each entry drawn from N (0, 1)) and classify using a MAP
classifier.

We first inspect the iterations of TRAIT as in Algorithm 1.
Figure 1a demonstrates the monotonically decreasing objec-
tive when m = 3. Figures 1b and 1c compare the absolute
valued Gram matrices of the training samples before and after
TRAIT learns the transform. As expected, the post-transform
Gram matrix has an obvious block diagonal structure with
the original diagonal blocks roughly preserved. Note that the
off-diagonal block values in Figure 1c are significantly sup-
pressed for better inter-class separation.
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Fig. 1: TRAIT with target dimension m = 3. (a) Objective
function value of TRAIT during the iterations of Algorithm 1;
(b) Absolute valued Gram matrix of the original training sam-
ples; (c) Absolute valued Gram matrix of the transformed
training samples by TRAIT.

We then embed the original and transformed data into 3
dimensional coordinates via PCA. Figure 2 demonstrates the
embeddings when the target feature dimension is m = 3.
Each class is represented with a different color. Annotated
under each embedding are the angles between the three sub-
spaces of the original/transformed data. TRAIT significantly
increases the angles between different subspaces, competitive
w.r.t. LRT, while LDA and random projection do not succeed
in increasing the separation.

In Figure 3 we vary feature dimension m and compare
the MAP classifier’s error probabilities on features extracted
by different methods. Features extracted by TRAIT and LRT
achieve comparable Pe over all the m, outperforming LDA
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Fig. 2: Embeddings of original and transformed data.
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Fig. 3: MAP classifier’s Pe
on transformed data. Note
that TRAIT (blue) almost
overlaps with LRT (red).
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Fig. 4: NSC’s Pe on orig-
inal/transformed face im-
ages.

and random projection. Note also that with dimension reduc-
tion, TRAIT is able to achieve misclassification probability
comparable to that achievable with the initial higher dimen-
sional data.

5.2. TRAIT on Face Dataset

The extended Yale B face database includes 38 subjects, each
with 64 images taken under different illumination conditions.
We use a cropped version of this data set1, where each im-
age is of size 32 × 32 = 1024. It is known that a 9 dimen-
sional subspace is sufficient to capture the geometry of each
subject [1]. In this experiment, we randomly select half of
the 64 images from each subject as training and the rest as
testing. We vary the target dimension m for all the feature
extraction methods and apply NSC to the transformed testing
data. The classification error Pe is as shown in figure 4. The
NSC achieves much higher accuracies on TRAIT and LRT
extracted features than on those of the other methods. More-
over, TRAIT and LRT extracted features are quite different
(as will be seen below), suggesting that there is information
present in one view that is not present in the other. This is

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

confirmed by noting that when NSC is applied to the con-
catenation of these two views, the classification accuracy is
increased.

The difference between TRAIT and LRT extracted fea-
tures is due to the intra-class structure preserving property
of TRAIT. We illustrate this property by viewing the trans-
formed classes as faces in the original image domain. In fig-
ure 5, we display the original images of subject 10 and their
and their TRAIT and LRT transforms. TRAIT preserves the
various illumination conditions in different images, whereas
LRT collapses all images of one subject onto a similar im-
age regardless of their differences. In summary, LRT sacri-
fices intra-class structure to take maximal advantage of differ-
ences in the support of the low-rank subspaces that describe
the different classes. LRT and TRAIT are similar in that the
block-diagonal target structure in TRAIT penalizes large en-
tries outside the diagonal blocks. However TRAIT is also able
to incorporate intra-class structure in the block diagonal tar-
get, and classification performance is improved by using LRT
features and TRAIT features in combination.

Fig. 5: Comparison of transformed images. Top: original im-
ages; Middle: transformed by TRAIT; Bottom: transformed
by LRT. Red circles highlight several examples of the pre-
served structural information from original image to TRAIT
transformed ones.

6. CONCLUSION

Starting from a low-rank subspace model, we have shown that
the error probability of an optimal classifier is determined
by the product of the sines of the principal angles between
subspaces. We have designed an algorithm, TRAIT, for ex-
tracting low dimensional features, that increases separation
between classes, and that can also be tuned to preserve spe-
cific intra-class structure. Classification based on TRAIT fea-
tures alone is competitive with state-of-the-art methods such
as LRT. Classification performance is improved by using LRT
features and TRAIT features in combination. Future work
will include convergence analysis of TRAIT and the design
of task-specific target matrices.
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