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ABSTRACT

Attackers often create systems that automatically rewrite and
reorder their malware to avoid detection. Typical machine
learning approaches, which learn a classifier based on a hand-
crafted feature vector, are not sufficiently robust to such re-
orderings. We propose a different approach, which, similar
to natural language modeling, learns the language of malware
spoken through the executed instructions and extracts robust,
time domain features. Echo state networks (ESNs) and recur-
rent neural networks (RNNs) are used for the projection stage
that extracts the features. These models are trained in an un-
supervised fashion. A standard classifier uses these features
to detect malicious files. We explore a few variants of ESNs
and RNNs for the projection stage, including Max-Pooling
and Half-Frame models which we propose. The best perform-
ing hybrid model uses an ESN for the recurrent model, Max-
Pooling for non-linear sampling, and logistic regression for
the final classification. Compared to the standard trigram of
events model, it improves the true positive rate by 98.3% at a
false positive rate of 0.1%.

Index Terms— Malware Classification, Recurrent Neural
Network, Deep Learning

1. INTRODUCTION

Malicious software, commonly referred to as malware, is a
significant problem for modern computing devices including
desktop computers and mobile phones. While commercial
anti-virus (AV) products attempt to detect and remediate (i.e.
clean) the infected device, attackers sufficiently motivated
by profit implement clever programming redundancies to
quickly and automatically reinfect the computer or phone.
Given the challenges and ubiquity of modern malware, many
researchers have attempted to devise automated methods for
detection [1]. For over a decade, researchers and anti-virus
companies have begun employing machine learning algo-
rithms to address this problem as noted in Section 2. In
the academic community, researchers have proposed using a
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wide variety of machine learning classifiers such as logistic
regression [2], neural networks [3, 4], and decision trees [5]
for malware classification.

Recently, researchers have demonstrated excellent results
using recurrent neural networks (RNNs) on language mod-
eling [6], online handwritten recognition and generation [7],
and speech recognition [9]. Echo state networks (ESNs) have
been successfully used for predicting chaotic systems [10].
In this paper, we ask the question: Can these sequential mod-
els also help to automatically detect malware? In our study,
the high-level events are canonicalized representations of ap-
plication programming interface (API) calls made to various
components including the operating system (OS) and the C
run-time library form the input sequences. To the best of our
knowledge, this is the first paper to propose using RNNs or
ESNs to address the malware problem.

We attempt to learn the language of malware as a new
method of detecting these unknown threats. Specifically, us-
ing the recurrent model to directly classify the files is not ef-
ficient (there is only a single bit of information for every se-
quence). Instead, we use a recurrent model trained to predict
next API call, and use the hidden state of the model (that en-
codes the history of past events) as the fixed-length feature
vector that is given to a separate classifier (logistic regression
or MLP). In an attempt to improve the scope of this summary
provided by the recurrent model we also provide a few mod-
ifications of how the feature vector is constructed from the
RNN or ESN. We first introduce Max-Pooling over the values
of the hidden units in time. The assumption behind this choice
is that hidden units may learn to specialize in detecting differ-
ent and potentially reordered temporal patterns. In our clas-
sification task we are primarily interested in knowing if these
temporal patterns are present or not in the input sequence.
Next we propose the Half-Frame model which increases the
memory capacity of our final representation by including state
information in the middle of the file’s event sequence in ad-
dition to the final state. We also employ a Leaky-Units ar-
chitecture [11] which essentially utilizes an exponentially de-
caying low-pass filter to increase the long-term memory of
the system. It is often the case that for malware events the

1916978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



most informative part of a sequence occurs at the beginning
of the sequence and may be forgotten by standard recurrent
models. To overcome this limitation, we use a Bi-Directional
model [12] which combines two separate models, one which
learns by processing the events in the forward direction and
the second which constructs a model by processing the events
in the reverse direction.

2. RELATED WORKS

Related work falls into two main categories, recurrent model-
ing and malware classification.

Recurrent Modeling: Recurrent neural networks have
been explored since the 1980s. However this model quickly
became unpopular following the discovery of the vanishing
and exploding gradient problem [13, 14]. As a way of avoid-
ing these issues, [15] introduced Echo State Networks, a form
of recurrent neural models whose input and recurrent weights
are not trained, but carefully sampled. Jaeger and Haas [10]
show that such models can do very well on predicting chaotic
dynamics. Results as those from [14, 16, 17] try to address the
learning problem of RNNs. As a result, a variety of state-of-
the-art results, including online handwritten recognition [7]
or speech [9], have been obtained using different variations
of recurrent models. Mikolov et al. [6] provide state-of-the-
art results in language modelling using a standard RNN. [7]
explores the same problem with deep LSTM recurrent mod-
els.

Malware Classification: The most recent summary of
the field of malware classification is given in [1]. A classic pa-
per on malware classification was written by Shultz et al. [18]
which proposed several different classifiers including Ripper,
Naive Bayes, and an ensemble classifier to classify files as
malware or benign. Neural networks were also used [3, 4]
to detect malware. Kolter and Maloof [5] compared naive
Bayes, decision trees, support vector machines, and boost-
ing for malware classification. The event stream used in our
model is a reflection of the unknown file’s behavior. Behavior
malware detection has also been a very active area of research.
A few of the important papers which utilize behavior to de-
tect malware include [19, 20]. El-Bakry [21] suggested that
a Time Delay Neural Networks could be used for malware
classification, but did not do any experiments to validate the
claim. A hierarchical Hidden Markov Model was also used
for this task by Muhaya et al. [22].

3. ALGORITHM DESCRIPTION

Let ut and ht denote the input and state vectors, respectively,
at time instance t. Let Win,Wrec,b,Wout,bout be the in-
put to hidden layer weight matrix, recurrent weight matrix,
bias, and output weight matrix and output bias respectively.
Let φ and φout be the activation function of the hidden layer
and output layer respectively. In our projection stage, tanh is

used for the hidden layer and softmax for the output. The re-
current models are then described by the following equations:

ht = φ(Winut +Wrecht−1 + b) (1)
ŷt = φout(Woutht + bout), (2)

where ŷt is the predicted output. For malware classification,
the memory window of the standard ESN and RNN models is
not sufficient. To address this shortcoming, we propose two
new algorithmic additions for recurrent architectures, Max-
Pooling and Half-Frame. In our study we also employ the pre-
viously proposed Leaky-Units [11] and Bi-Directional mod-
els [12]. Finally, we discuss the classification stage.

Max-Pooling: Max-Pooling is a form of non-linear
downsampling which has previously been used in convo-
lutional neural networks (CNNs) for object recognition in
images [23]. Similar to the desired response for vision, we
use Max-Pooling to increase invariance in the fixed-length
representation we feed to the system’s classification stage.
While Max-Pooling was originally proposed in the context
of CNNs, we believe that using Max-Pooling for RNNs and
ESNs is new. As shown in Figure 1, we select the maximum
hidden state output, hmax for each sequence as:

hmax(i) = max(h0(i), h1(i), · · ·hT (i)) (3)

for i ∈ (0, · · · , N−1) whereN is the number of neurons and
the max operation is performed element-wise. The represen-
tation of the sequence is the concatenation of the last state and
the Max-Pooling layer [hT ;hmax].

max
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Fig. 1: Depiction of the overall structure of the model. The
projection stage consists of a recurrent model where Max-
Pooling is used as additional features for the fixed-length rep-
resentation.

Half-Frame: Instead of using the state information at the
end of the sequence to determine if the sequence contains
malicious activity, we also use the intermediary state in this
model. The intuition is that the intermediary state will mostly
represent the history up to that point in time, while the last
state will mostly represent the events towards the end of the
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Fig. 3: Missclassification rate for best models as a function of
the maximal sequence length.

sequence. Typically, the Half-Frame model includes the state
from the middle of the sequence in addition to the state at the
end of the sequence. Based on our intuition, this allows our
model to increase its memory capacity within each sequence.

Fixed-Length Representations: Once Wrec and Win

have been learned for the RNN or generated for the ESN,
the next step in the processing is to construct a fixed-length
representation for the event stream which is provided as input
to the classification stage.

One practical issue we face at this point is the huge varia-
tion in the length of the input streams. Some streams included
a single event while others had over 100,000 events. To deal
with this, and also to answer the question: How fast can we
detect if a file is infected or not?, we decided on a maximal
length N and minimal length n for any stream. We ignored
all sequences shorter than n, which was fixed to 15 through-
out all our experiments. For all sequences with more than N
steps, which was a hyper-parameter for which we explored
the values 50, 100, 200 and 65536, we kept only the first N
events.

Classifier: The final component of the proposed algo-
rithm is the classification stage. As noted previously, we used
both logistic regression and multi-layer perceptrons with rec-
tifier units [24] to classify the fixed-length projections. We
also use dropouts which have shown to significantly improve
the generalization of the MLP model [25]. It is important
to note that the RNN and ESN are trained independently of
the classifier. Thus, they act as feature extractors trained in
an unsupervised fashion. We believe this approach is another
contribution to the growing body of representation learning
approaches.

4. EXPERIMENTAL RESULTS

We rely on Theano [26] to efficiently implement these ar-
chitectures. We first describe the parameter settings used in
this analysis. We then investigate the effect of the representa-
tion length for the various models. We conclude this section
by presenting the Receiver Operating Characteristic (ROC)
curves for each model.

Experiment Configuration: The malware and benign
files were collected from our company’s production, anti-
malware file collection. Some of the samples may be used to
train a production malware classification system, and we ac-
knowledge this dataset is not publicly available. Our system is
under constant attack by adversaries and releasing the dataset
may degrade the end user’s protection on hundreds of millions
of computers around the world. For training the projection
stage, analysts provided behavior event streams from 250,000
randomly selected malware files from the file collection they
use during their daily investigations and 250,000 randomly
selected benign files from a second collection which is used
to ensure that anti-virus signatures do not cause false positive
detections on third-party programs. The initial dataset was
randomly split into 297,500, 52,500, and 150,000 examples
for training, validation, and test, respectively. The training is
done on segments of equal length of 100 events formed from
the streams representing each file.

The raw event stream consists of 114 distinct, high-level
events generated by the anti-malware engine which encode
all of the low-level API (application programming interface)
calls made by the program. There are several different APIs
which can be used to generate a file (e.g. kernel32!CreateFile,
msvcrt!fopen), and these high-level events canonicalize mul-
tiple events with similar functionality. To infer the ability
of the models to generalize, we collected the list of events
that appear in only one class or the other and ignored these
events. To train the final classifier in the classifier stage, we
used 75,000 randomly selected files which were evenly split
between the malware and benign classes. These files were
split as 50,000 for training, 10,000 for validation, and 15,000
for test. The considered files had at least 15 events, and the
sequence formed from the first 100 events of each file was
unique. This ensured that there was no overlap between the
training, validation and test set which were constructed by
randomly assigning files to one of the 3 possible sets.

We hand-tuned the hyper-parameters of the projection and
classification models by sweeping over a range of possible
values. For the classification stage, we consider logistic re-
gression and a two hidden-layer MLP. Logistic regression is
trained using the softmax criterion in all cases. All MLPs
have two hidden layers. For both models the optimal learn-
ing rate is 1.0, and we use dropout for the MLP with a drop
probability of 0.5. The hidden layers of the MLP have 1024
units and use rectifier activation function. The learning rate is
halved when the validation error increases.

The dimensionality of the fixed-length representation is
3000 for all recurrent models. Bi-Directional models use
1500 hidden units for the forward pass and 1500 units for the
backwards pass. Half-Frame models have 1500 units and the
representation uses 1500 values for mid-sequence frame and
1500 for the last frame. Max-Pooling model has similarly
1500 hidden units and the representation is the last hidden
state concatenated to the max-pooled one. Leaky-Units mod-
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(b) MLPs

0 0.5 1 1.5 2
0

20

40

60

80

100

False Positive Rate (%)

T
ru

e 
P

os
iti

ve
 R

at
e 

(%
)

 

 

Bag of Events − LR
Bag of Events − MLP
Event TriGrams − LR
ESN − Max−Pooling, LR
RNN − Max−Pooling, LR
ESN − Max−Pooling, MLP
RNN − Max Pooling, MLP
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Fig. 2: ROC curves for different classifiers (a-c).

els consist of 1500 units from the smoothed model where
β is uniformly sampled between [.01, .1] and 1500 normal
hidden units. For each of these models, we append the rep-
resentation from the bag of events to the final representation.
Therefore we are investigating if these new representations,
that take into account the order of events, encode additional
useful information which is not present in the bag of events
encoding. Given the low-dimensionality of the input data no
feature selection is required.

The sparsity for the initialization of the recurrent weights
is set to have each unit at time t feed into only 20 randomly
selected units at t + 1. The spectral radius in all cases is set
initially to 0.99. The input weights’ scale (measured as the
norm of each column of the matrix) is set to 2.0, and their
sparsity (with the same meaning as above) is also set to 20.
The learning rate for training is 1.0. A cutoff threshold is used
for clipping the gradients for RNNs and is set to 1.0. For the
RNN, the additional cost of predicting the whole sequence,
given the state of the network ht, has a weight of 0.5.

ROC Curves: In the previous subsection, we evaluated
the performance of the recurrent models with a classifier
threshold value of 0.5. Next, we evaluate the ROC curves
for each of these models, and later we compare the best
performing Max-Pooling models against several baseline ar-
chitectures (see Figure 2c). Figure 2a and Figure 2b shows
the ROC curves when logistic regression and the MLP, re-
spectively, are used for classification.

Figure 2c compares the ROC curves of the best per-
forming Max-Pooling architectures plus several baselines
including a bag of events representation and a bag of tri-
grams model [3, 2, 27]. The baseline bag of events (BOE)
model is equivalent to the standard Bag of Words (BOW)
model in natural language processing. To compare against
previously published papers which utilize event sequences,
we use a bag of trigrams representation, and train a logistic
regression model with softmax. The results confirm our sus-
picion. At a false positive rate of 0.1%, the TPR of the bag
of trigrams model (36.17%) is significantly better than for
the bag of events models (24.46%). The ROCs for logistic
regression dominate the MLPs for both the ESNs and RNNs,

but the results are very close for ESNs. The ESN model with
Max-Pooling and logistic regression (TPR = 71.71% at FPR
= 0.1%) outperforms event trigrams by 98.3%. We believe
Max-Pooling works for the ESN and RNN because, for this
task, we care about detecting temporal patterns regardless
of when the pattern occurs in the sequence. In particular,
this property helps to detect reordered malware. If each unit
specializes in different patterns, Max-Pooling tells us which
of these different patterns actually appear in the file. Figure 3
shows the misclassification rate as a function of the maximal
number of steps processed, suggesting that there is not much
accuracy lost if we truncate all sequences to a maximum of
200 steps (greatly reducing the memory and computation
requirements).

5. CONCLUSIONS

Automated malware classification is a very challenging prob-
lem. When we began this research, we were concerned that
the adversarial nature of the attack would prevent recurrent
models from learning the language of malware. Results in
Section 4 demonstrate that combining a recurrent model with
a standard classifier can improve the true positive rate by a
factor of three compared to a bag-of-events model and a factor
of two given by a bag-of-trigrams model. Given this tremen-
dous improvement, we believe these hybrid models which
combine an ESN or RNN with a higher-level classifier can
serve as effective weapons in the malware analyst’s arsenal.

Our initial goal of this work was to learn the language of
malware, but the ESN models outperform the RNNs in the
majority of the experiments. The task of learning falls in this
situation mostly on the classifier which has to extract the use-
ful information from the random temporal projection of the
ESN. We believe that Max-Pooling is more useful in this sit-
uation, as the ESN does not utilize the hidden state in the
same way the RNN does. The hidden representation is more
redundant due to implicit randomness of the projection. We
are hopeful that additional research in recurrent modeling can
be adapted to the malware language modeling task and can
improve these results in the future.
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