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ABSTRACT

We study risk-averse multi-armed bandit problems under
mean-variance measures. We consider two risk mitigation mod-
els. In the first model, the variations in the reward values ob-
tained at different times are considered as risk and the objective
is to minimize the mean-variance of the observed rewards. In
the second model, the quantity of interest is the total reward at
the end of the time horizon and the objective is to minimize the
mean-variance of the total reward. Under both models, we es-
tablish asymptotic as well as finite-time lower bounds on regret
and develop online learning algorithms that achieve the lower
bounds.

Index Terms— Multi-armed bandit, risk-aversion, mean-
variance, regret.

1. INTRODUCTION

1.1. The Classic MAB Problems

Multi-armed bandit (MAB) is a class of online learning and se-
quential decision-making problems under unknown models. In
the classic MAB formulation, there areK independent arms and
a single player. At each time, the player chooses one arm to
play and obtains a random reward drawn i.i.d. over time from
an unknown distribution specific to the chosen arm. The design
objective is a sequential arm selection policy that maximizes the
total expected reward over a horizon of lengthT by striking a
balance between earning immediate reward and learning the un-
known reward models. The performance of an arm selection
policy is measured byregretdefined as the expected total reward
loss with respect to the ideal scenario of known reward models
(under which the arm with the highest expected reward is always
played) [1]. A sublinear regret growth rate withT indicates that
the maximum average reward under known models is asymp-
totically achievable asT approaches infinity, and the slower the
regret growth rate, the faster the convergence rate of the average
reward.

The MAB problem finds a wide range of applications in-
cluding clinical trials, target tracking, dynamic spectrum access,
internet advertising and web search, and social economicalnet-
works (see [2–4] and references therein).
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1.2. Risk-averse MAB

In the classic MAB formulation, the performance measure is on
theexpectedreturn of an online learning algorithm. In many ap-
plications, however, a player may be more interested in reducing
the uncertainty (i.e., risk) in the outcome, rather than achieving
the highest ensemble average. In this paper, we formulate and
studyrisk-averseMAB problems.

The notions of risk and uncertainty have been widely stud-
ied, especially in economics. However, there is no consensus on
a mathematical definition of risk and uncertainty, or on the re-
lation between them [5]. Two commonly adopted risk measures
arerisk-averse utility function[6] and mean-variance[7]. The
latter, introduced by Markowits in 1952, is particularly favored
for portfolio selection in finance [8]. Specifically, the mean-
varianceξ(X) of a random variableX is given by

ξ(X) = σ2(X)− ρµ(X), (1)

whereσ2(X) andµ(X) are, respectively, the variance and the
mean ofX , the coefficientρ > 0 is the risk tolerance factor that
balances the two objectives of high return and low risk.

In this paper, we study risk-averse MAB under mean-
variance measures. We consider two risk mitigation models
targeted for different applications. In the first model, thevaria-
tions in the reward values obtained at different times are consid-
ered as risk, and the objective is to minimize the mean variance
of the observations (i.e., the obtained rewards over time).One
application of this model is clinical trial where, besides obtain-
ing high average return, it is desirable to avoid high variations
in the treatment outcomes of different patients [9]. In the sec-
ond risk mitigation model, the player is only interested in the
total reward at the end of the time horizon of lengthT (rather
than each individual reward value obtained during the process).
The objective is to minimize the mean-variance of the total re-
ward accrued up toT . This model is of particular interest in
economic and financial applications (for example, retirement
investment). Under both models, we establish asymptotic as
well as finite-time lower bounds on regret and develop online
learning algorithms that achieve the lower bounds.

1.3. Related Work

While there are a number of classic and recent studies on the tra-
ditional risk-neutral MAB (see [1, 10–12] and references there-
in), risk-averse MAB has received little attention. There are a
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couple of recent studies that address risk-aversion in MAB.In
an initial work on this topic, a risk-averse MAB problem using
the measure of mean-variance of observations was formulated
in [13]. Different from this paper where we consider stochas-
tic risk-averse MAB, [13] adopts the so-called non-stochastic
MAB framework first developed in [14] for risk-neutral MAB.
The most relevant work to this paper is [9] which also consider-
s the mean-variance of observations as a performance measure
for risk-averse MAB within the stochastic framework. It was
shown in [9] that a variation of the classic UCB policy develope-
d in [11] for risk-neutral MAB achievesO(log2 T ) regret per-
formance under the assumption of a positive difference between
the mean-variance of the best and the second best arms, and a
variation of the DSEE policy developed in [12] for risk-neutral
MAB achievesO(T 2/3) regret performance without the positive
difference assumption. While [9] only focuses on algorithmde-
velopment, this paper also provides tight lower bounds on both
the asymptotic and finite-time regret performance which serve
as fundamental limits for gauging the optimality of learning al-
gorithms. Furthermore, we provide a finer analysis of the UCB
variation (referred to as MV-UCB), showing that it achievesan
O(log T ) regret rather thanO(log2 T ) as given in [9]. Together
with the regret lower bound developed in this paper, this fin-
er analysis shows that MV-UCB is asymptotically order opti-
mal under the measure of mean-variance of observations. In
addition, we provide a parallel study under the model of mean-
variance of total reward, a new risk mitigation model that has not
been studied in the literature.

There are also a couple of studies on risk-averse MAB under
a different risk measure based on the concept of value at risk[15,
16]. Due to the difference in risk measures, these studies and the
work reported in this paper employ different techniques, and the
corresponding results cannot be directly compared.

2. PRELIMINARIES

Consider aK-armed bandit and a single player. At each timet,
the player chooses one arm to play. Playing armi yields i.i.d.
random rewardXi(t) drawn from an unknown distributionfi.
Let F = (f1, · · · , fK) denote the set of the unknown distribu-
tions. An arm selection policyπ specifies a function at each time
t that maps from the player’s observations and decision history
to the arm to play at timet.

2.1. Notations and Assumptions

Throughout the paper,∗ is used to indicate the optimal arm that
has the smallest mean-variance. For example,ξ∗ andµ∗ denote
the mean-variance and mean value of the optimal arm, respec-
tively. If there are more than one optimal arm, one of them is
chosen arbitrarily as∗. Let Γi,j = µi − µj and∆i = ξi − ξ∗
denote, respectively, the difference between the mean values of
arm i and j, and the difference between the mean-variance of
arm i and the optimal arm. The following notations are used
for sample mean, sample variance, and sample mean-variance

of armi:

µi(t) =
1

τi(t)

τi(t)
∑

s=1

Xi(s), (2)

σ2
i(t) =

1

τi(t)

τi(t)
∑

s=1

(Xi(s)− µi(t))
2, (3)

ξi(t) = σ2
i(t)− ρµi(t), (4)

whereτi(t) denotes the number of times armi has been played
up to timet.

Throughout the paper it is assumed that for all random vari-
ablesXi assigned to the arms,(Xi − µi)

2 has a light-tailed dis-
tribution. A random variableX is said to have a light-tailed
distribution if

EeuX ≤ eζ0u
2/2, (5)

for some constantζ0 > 0 andu ∈ (0, u0) for someu0 > 0.

2.2. Concentration of the Sample Mean-Variance

In the lemma below, we establish a concentration result on the
sample mean-variance, which plays an important role in regret
analysis. This result is similar to Chernoff-Hoeffding bound on
the concentration of sample mean for light-tailed random vari-
ables. The proof is based on Chernoff-Hoeffding bound [17]
and is omitted due to the space limit.

Lemma 1 Let ξ(X) be the sample mean-variance of a random
variableX calculated froms observations. Assume that(X −
µ)2 has a light-tailed distribution. We have, for some constant
a > 0

{

P[ξ(X)− ξ(X) < −δ] ≤ 2 exp(− asδ2

(2+ρ)2
),

P[ξ(X)− ξ(X) > δ] ≤ 2 exp(− asδ2

(1+ρ)2
).

(6)

3. MEAN-VARIANCE OF OBSERVATIONS

Employing a policyπ by the player results in a set of reward
observations{Xπ(t)(t), t = 1, ..., T }. The objective in the first
risk mitigation model is to minimize the total mean-variance of
the observations defined as

ξπ(t) =

T
∑

t=1

[Xπ(t) + (Xπ(t) −
1

T

T
∑

t=1

Xπ(t))
2]. (7)

Regret under this model is given by

R(1)
π (T ) = E[ξπ(t)]− Tξ∗. (8)

Regret is the difference between the expected total mean-
variance of the observations under policyπ and that under
known models (where the player always plays the optimal arm).
Lemma 2 below gives an expression ofR

(1)
π (T ) in terms ofτi

and∆i. This lemma is used in the following subsections for
driving lower bounds on regret and analyzing the performance
of the learning algorithms.
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Lemma 2 The regret of a policyπ under the measure of mean-
variance of observations can be written as

R(1)
π (T ) =

T − 1

T

K∑

i=1

E[τi(T )]∆i +
1

T 2
E[

K∑

i=1

τi(T )(
K∑

j=1

τj(T )Γi,j)
2]. (9)

Proof is omitted due to space limit.

3.1. Lower Bounds on Regret

In the MAB problem two types of regret, referred to as the
asymptotic regret and the finite-time regret are distinguished,
based on the order of taking the worst-case over all arm distri-
butions and lettingT grow to infinity. The asymptotic regret is
obtained by lettingT grow to infinity first and then consider the
worst-case among all possible arm distributions. The finitetime
regret, however, assumes that the learning algorithm facesa se-
quence of independent finite-horizon problems with increasing
horizon lengthT . For each finite-horizon problem with length
T , the performance of the algorithm is measured against the
worst-case arm distribution specific to the horizon lengthT .
The following theorem gives lower bounds on the asymptotic
and finite-time regret under the measure of mean-variance of
observations. Proof is omitted due to space limit.

Theorem 1 Consider a risk-averse MAB problem formulation
under the measure of mean-variance of observations with∆ >

0. The asymptotic regret of any policyπ satisfies, for some con-
stantsc > 0 andT0 ∈ N,

R(1)
π (T ) ≥ c logT

∆2
for all T > T0. (10)

The finite-time regret of any policyπ satisfies, for some con-
stantsc > 0 andT0 ∈ N,

R(1)
π (T ) ≥ cT 2/3 for all T > T0. (11)

3.2. Risk-Averse Learning Algorithms

The first algorithm we consider here is a variation of the classic
UCB policy developed in [11] for risk-neutral MAB. This risk-
averse learning algorithm, referred to as MV-UCB, assigns an
indexI(t) to each arm and plays the arm with the smallest index
at timet. The index depends on the sample mean-variance cal-
culated from past observations and the number of times that the
arm has been played up to timet. Specifically, the index of arm
i at timet is given by

Ii(t) = ξi(t)− b

√

log t

τi(t)
, (12)

whereb is a policy parameter whose value depends on the risk
measure. The regret performance of MV-UCB is given in the
theorem below.

Theorem 2 Set the value ofb in the MV-UCB policy such that

b ≥
√
2(2+ρ)√

a
. The regret offered by the MV-UCB policy under

the measure of mean-variance of observations is upper bounded
by

R
(1)
MV −UCB(T ) ≤

∑

i6=∗

(
4b2 log T

∆2
i

+ 2)(∆i + 2Γ2
max). (13)

This theorem gives a finer analysis of the performance of
MV-UCB policy comparing to [9] (where an upper bound of
O( log

2 T
∆4 ) was shown). This result together with the lower

bound result in Theorem 1 show the asymptotic optimality of
the MV-UCB policy under the measure of mean-variance of
observations when∆ > 0.

As discussed in [9] the regret performance of MV-UCB al-
gorithm is linear with time when∆ = 0. Thus, the second
algorithm as a variation of the DSEE policy developed in [12]
for risk-neutral MAB was proposed, achievingO(T 2/3) regret
performance. In the DSEE policy, time is divided into two in-
terleaving sequences: an exploration sequence denoted byE(t)
and an exploitation sequence. In the former, the player plays al-
l arms in a round-robin fashion. In the latter, the player plays
the arm with the smallest sample mean. This policy is modified
to a risk-averse learning algorithm, referred to as MV-DSEE,
by replacing the sample mean with sample mean-variance. To
achieve theO(T 2/3) regret performance it is sufficient to set
|E(t)| = ⌈t2/3⌉. From Theorem 1 it is seen that the MV-DSEE
algorithm archives the order optimal finite-time regret perfor-
mance under the measure of mean-variance of observations. We
also mention that the MV-DSEE policy with the parameter set-
up

|E(t)| = ⌈f(t) log t⌉, (14)

with f(t) a positive increasing unbounded function, achieves an
asymptotic regret performance ofO(f(t) log t) with no assump-
tion on∆. This means the asymptotic performance can get close
to logarithm up to such a functionf(t). For examplef(t) can
be set tolog t or

√
log t.

4. MEAN-VARIANCE OF TOTAL REWARD

The risk-neutral MAB optimizes the expected total reward ob-
tained by a policyπ up to timeT . The objective in the second
risk mitigation model we study here is to optimize the mean-
variance of total reward up to timeT . The regret under this
model is given by

R(2)
π (T ) = ξ(

T
∑

t=1

Xπ(t))− Tξ∗, (15)

where the first term is the mean-variance of the total reward ob-
tained by policyπ and the second term is the mean-variance
of the total reward achievable when the arm reward models are
known. Parallel to Lemma 2, the following lemma gives an ex-
pression of the regret under the measure of mean-variance of
total reward in terms ofτi and∆i.

Lemma 3 The regret of a policyπ under the measure of mean-
variance of total reward can be written as

R(2)
π (T ) =

K
∑

i=1

Eτi(T )∆i + E[(
∑

i6=∗
(τi − Eτi)Γi,∗)

2]. (16)
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4.1. Lower Bounds on Regret

The minimum asymptotic regret growth rate under the measure
of mean-variance of total reward can be shown to be logarith-
mic. This follows readily from the regret lower bound under
the classic risk-neutral MAB formulation (see [11, 18]). Details
are omitted due to space limit. Next, we consider the finite-time
regret under the measure of mean-variance of total reward and
show that it grows at least linearly with time. In other words,
for any policyπ and any time horizonT , there exists an assign-
ment of distributions to the arms that renders sublinear regret
orders impossible. The reason behind this result can be intu-
itively understood by examining the trade-off between learning
and risk-aversion. The classic MAB problem is known to ad-
dress the exploration-exploitation trade-off in learning. Here, we
find a higher order trade-off between learning and risk-aversion.
The consequence of learning manifests in the dependency of cur-
rent actions on past observations. This dependency on random
observations, however, leads to randomness in the outcome of
algorithm, causing uncertainty. In the light of Lemma 3, it can
be said upper bounding the number of times a suboptimal ar-
m is played results in an inevitable variance inτi. Theorem 3
formally states this result. Proof is omitted due to space limit.

Theorem 3 Consider a risk-averse MAB problem formulation
under the measure of mean-variance of total reward. The finite-
time regret of any policyπ satisfies, for some constantsc > 0
andT0 ∈ N,

R(2)
π (T ) ≥ cT for all T > T0. (17)

4.2. Risk-averse Learning Algorithms

After some modifications to policy parameters, both the MV-
UCB and the MV-DESS polices apply to the risk mitigation
model under the measure of mean-variance of total reward. The
following theorem states their performance in terms of asymp-
totic regret order.

Theorem 4 Set the value ofb in the MV-UCB policy such that

b ≥
√
5(2+ρ)√

a
. The regret offered by the MV-UCB policy under

the measure of mean-variance of total reward is upper bounded
by

R
(2)
MV −UCB(T ) = O(

log2 T

∆4
). (18)

Set the cardinality of exploration sequence|E(t)| = ⌈f(t) log t⌉,
with f(t) a positive increasing unbounded function. The regret
offered by the MV-DSEE policy under the measure of mean-
variance of total reward satisfies

R
(2)
MV −DSEE(T ) = O(f(t) log t). (19)

For∆ = 0, similar to the case under the measure of mean-
variance of observations, MV-UCB policy shows a poor perfor-
mance. The MV-DSEE policy achieves theO(f(t) log t) asymp-
totic regret. This superior performance of MV-DSEE comparing
to MV-UCB policy, in this case, is due to the deterministic struc-
ture of the MV-DSEE policy. The cardinality of exploration se-
quence predetermines the number of times each suboptimal arm
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Fig. 1. The effect of parameterb on the performance of MV-
UCB policy under different measures.
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Fig. 2. Comparison between regret performance of MV-UCB
and MV-DSEE algorithms when∆ = 0.

is played during the exploration sequence. The uncertaintyin the
exploitation sequence causes only a constant amount of regret.

5. SIMULATIONS

In this section, we provide numerical experiments on the perfor-
mance of the algorithms. Fig 1 shows the performance of MV-
UCB policy with different values of parameterb. Under the mea-
sure of mean-variance of observations the best performanceis
obtained withb = 1.5while under the measure of mean-variance
of total reward the best performance is obtained withb = 2.5.
This result confirms that the parameterb needs to be tuned dif-
ferently because of the different objectives under two risk-averse
models. The higher value ofb under the model of mean-variance
of total reward shows a higher rate of exploration under this
model. The experiment is run on a4-armed bandit with nor-
mal distributions whereµ1 = 0.1, µ2 = 0.15, µ3 = 0.2, µ4 =
0.25,σ2

1 = 1, σ2
2 = 1.5, σ2

3 = 2, σ2
4 = 2.5. Fig. 2 compares the

regret performance of the MV-UCB and MV-DSEE algorithms
for a case with∆ = 0. While the regret performance of the MV-
UCB approaches to linear with time, the MV-DSEE algorithm
shows anO(T 2/3) regret performance. The experiment is run
on a2-armed bandit with normal distributions.
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