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ABSTRACT 1.2. Risk-averse MAB

We study risk-averse multi-armed bandit problems undeln the classic MAB formulation, the performance measurenis o
mean-variance measures. We consider two risk mitigatio-mo theexpectedeturn of an online learning algorithm. In many ap-
els. In the first model, the variations in the reward values obplications, however, a player may be more interested inciegu
tained at different times are considered as risk and thetige  the uncertainty (i.e., risk) in the outcome, rather thari@chg
is to minimize the mean-variance of the observed rewards. I highest ensemble average. In this paper, we formulate an
the second model, the quantity of interest is the total revear ~studyrisk-averseMAB problems.
the end of the time horizon and the objective is to minimize th ~ The notions of risk and uncertainty have been widely stud-
mean-variance of the total reward. Under both models, we eéed, especially in economics. However, there is no conseosu
tablish asymptotic as well as finite-time lower bounds onegeg @ mathematical definition of risk and uncertainty, or on tae r
and develop online learning algorithms that achieve theetow lation between them [5]. Two commonly adopted risk measures
bounds. arerisk-averse utility functiorj6] and mean-variancg7]. The

. L . latter, introduced by Markowits in 1952, is particularlydéaed

.I ndex Terms— Multi-armed bandit, risk-aversion, mean- ¢, portfolio selection in finance [8]. Specifically, the nmea

variance, regret. variancet(X) of a random variabl& is given by

1. INTRODUCTION §(X) = o*(X) — pu(X), 1)

whereo?(X) andu(X) are, respectively, the variance and the
mean ofX, the coefficienp > 0 is the risk tolerance factor that

Multi-armed bandit (MAB) is a class of online learning and se Palances the two objectives of high return and low risk.

quential decision-making problems under unknown modeis. | !N this paper, we study risk-averse MAB under mean-
the classic MAB formulation, there afé independentarms and Variance measures. \We consider two risk mitigation models
a single player. At each time, the player chooses one arm {grgeted for different applications. In the first model, tagia-
play and obtains a random reward drawn i.i.d. over time fron}ions in the reward values obtained at different times aresich

an unknown distribution specific to the chosen arm. The desigE"€d @S risk, and the objective is to minimize the mean veeian
objective is a sequential arm selection policy that maxémithe ~ ©f the observations (i.e., the obtained rewards over tirtg)e
total expected reward over a horizon of len@thoy striking a gppllgatlon of this model .|s.cI|n|ca.1I trial Where: be'S|debila).n-
balance between earning immediate reward and learningithe uin9 high average return, it is desirable to avoid high véoia
known reward models. The performance of an arm selectiofft the treatment outcomes of different patients [9]. In the-s
policy is measured bsegretdefined as the expected total rewar

1.1. The Classic MAB Problems

gond risk mitigation model, the player is only interested fie t

loss with respect to the ideal scenario of known reward modelfotal reward at the end of the time horizon of lengftH(rather

(under which the arm with the highest expected reward isyswa than each individual reward value obtained during the Bsre

played) [1]. A sublinear regret growth rate withindicates that The objective is to minimize the mean-variance of_the toea! r

the maximum average reward under known models is asym¥@rd accrued up t@". This model is of particular interest in

totically achievable a& approaches infinity, and the slower the €conemic and financial applications (for example, retineme

regret growth rate, the faster the convergence rate of teage ~ nvestment). Under both models, we establish asymptotic as

reward. well as finite-time lower bounds on regret and develop online
The MAB problem finds a wide range of applications in_Iearnlng algorithms that achieve the lower bounds.

cluding clinical trials, target tracking, dynamic specitraccess,

internet advertising and web search, and social econométal 1.3. Related Work

works (see [2—-4] and references therein). ) . .
( [2-4] ) While there are a number of classic and recent studies onahe t

This work is supported by the Army Research Office under GnN@it 1INF- .ditiOI’.lal risk-neutral MAB (see .[l, 10.—12] and r.eferenceerdq
12-1-0271. in), risk-averse MAB has received little attention. There a
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couple of recent studies that address risk-aversion in MIAB. of armi:

an initial work on this topic, a risk-averse MAB problem ugin ®

the measure of mean-variance of observations was fornulate _ 1

in [13]. Different from this paper where we consider stochas i(t) = T (t) Z Xi(s), ©
tic risk-averse MAB, [13] adopts the so-called non-stotibas S:(tl)

MAB framework first developed in [14] for risk-neutral MAB. — 1 < _

The most relevant work to this paper is [9] which also conside 0%(t) = (t) > (Xils) —m(1)%, ®)
s the mean-variance of observations as a performance reeasur _ __ =t

for risk-averse MAB within the stochastic framework. It was &) = o%i(t) — pp(t), (4)

shown in [9] that a variation of the classic UCB policy deymde
d in [11] for risk-neutral MAB achieve®)(log® T') regret per-
formance under the assumption of a positive difference detw
the mean-variance of the best and the second best arms, an
variation of the DSEE policy developed in [12] for risk-nealt
MAB achievesO(T2/3) regret performance without the positive
difference assumption. While [9] only focuses on algoritthen
velopment, this paper also provides tight lower bounds dh bo
the asymptotic and finite-time regret performance whiclveser
as fundamental limits for gauging the optimality of leagil- ¢, some constanf, > 0 andu € (0, uo) for someug > 0.
gorithms. Furthermore, we provide a finer analysis of the UCB
variation (referred to as MV-UCB), showing that it achiewes
O(log T') regret rather that(log® T') as given in [9]. Together
with the regret lower bound developed in this paper, this finin the lemma below, we establish a concentration result en th
er analySiS shows that MV-UCB is asymptotically order Opti'samp|e mean-variance, which p|ays an important role inetegr
mal under the measure of mean-variance of observations. Hhalysis. This result is similar to Chernoff-Hoeffding moon
addition, we provide a parallel study under the model of meanthe concentration of sample mean for light-tailed randonmi va
variance of total reward, a new risk mitigation modelthathet  aples. The proof is based on Chernoff-Hoeffding bound [17]
been studied in the literature. and is omitted due to the space limit.

There are also a couple of studies on risk-averse MAB under _ .
a different risk measure based on the concept of value dtiisk Lemma 1 Let{(X) be the sample mean-variance of a random
16]. Due to the difference in risk measures, these studigsran  Variable X' calculated froms observations. Assume thak’ —
work reported in this paper employ different techniques, the w)? has a light-tailed distribution. We have, for some constant
corresponding results cannot be directly compared. @>0

wherer;(t) denotes the number of times airhas been played
up to timet.

d g Throughout the paper it is assumed that for all random vari-
ablesX; assigned to the arm&X; — u;)? has a light-tailed dis-
tribution. A random variableX is said to have a light-tailed
distribution if

EeuX < 6{@11,2/27 (5)

2.2. Concentration of the Sample Mean-Variance

{ PE(X)%(XK%] < 2exp(~51m), ©

(X) = &(X) > 4] §2exp(—%)‘
2. PRELIMINARIES

3. MEAN-VARIANCE OF OBSERVATIONS
Consider ak -armed bandit and a single player. At each titme

the player chooses one arm to play. Playing amelds i.i.d. Employing a policyr by the player results in a set of reward
random rewardX;(¢) drawn from an unknown distributiofi,. ~ observationg X ,(t), t = 1,..., T'}. The objective in the first

Let F = (f1,--- , fx) denote the set of the unknown distribu- risk mitigation model is to minimize the total mean-variaraf

tions. An arm selection policy specifies a function at each time the observations defined as

t that maps from the player’s observations and decision ttyisto B T 1z

to the arm to play at time. &) = D (X + Xny — T > Xew)’]: %)
t=1 t=1

Regret under this model is given by
2.1. Notations and Assumptions

Throughout the pape¥,is used to indicate the optimal arm that RI(T) = E[E, ()] — TE.. (8)

has the smallest mean-variance. For exanflendy. denote

the mean-variance and mean value of the optimal arm, respec- Regret is the difference between the expected total mean-
tively. If there are more than one optimal arm, one of them ig/ariance of the observations under polisyand that under
chosen arbitrarily as. LetT';; = u; — p; andA; = & — &, known models (where the player always plays the optimal arm)
denote, respectively, the difference between the meamrsafi Lemma 2 below gives an expression]@f)(T) in terms ofr;
arms andj, and the difference between the mean-variance odnd A;. This lemma is used in the following subsections for
arm i and the optimal arm. The following notations are useddriving lower bounds on regret and analyzing the perforreanc
for sample mean, sample variance, and sample mean-variangighe learning algorithms.
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Lemma 2 The regret of a policyr under the measure of mean- This theorem gives a finer analysis of the performance of
variance of observations can be written as MV-UCB policy comparing to [9] (where an upper bound of
71X 1 K K 0] @ was shown). This result together with the lower
BT =~ ;E[”(T”A" + EE[; Ti(T)<;T-7(T)F’“J’)2]' © bcgunAd rt)esult in Theorem 1 show the asymptotic optimality of
‘ the MV-UCB policy under the measure of mean-variance of
observations wherA > 0.
As discussed in [9] the regret performance of MV-UCB al-
3.1. Lower Bounds on Regret gorithm is linear with time whem\ = 0. Thus, the second

In the MAB problem two types of regret, referred to as the@lgorithm as a variation of the DSEE policy developed in [12]
asymptotic regret and the finite-time regret are distintgeds  1OF risk-neutral MAB was proposed, achievig)(7/*) regret
based on the order of taking the worst-case over all armidistrPerformance. In the DSEE policy, time is divided into two in-
butions and letting” grow to infinity. The asymptotic regret is terleéaving sequences: an exploration sequence denot&d py
obtained by letting” grow to infinity first and then consider the @nd an exploitation sequence. In the former, the playerspidy
worst-case among all possible arm distributions. The fiifite | arms in a round-robin fashion. In the latter, the playerpla
regret, however, assumes that the learning algorithm faces the arm with the smallest sample mean. This policy is modified
quence of independent finite-horizon problems with indreps {0 @ risk-averse learning algorithm, referred to as MV-DSEE
horizon lengthT’. For each finite-horizon problem with length bY replacing the sample mean with sample mean-variance. To
T, the performance of the algorithm is measured against th@chieve theO(T%/%) regret performance it is sufficient to set
worst-case arm distribution specific to the horizon length |£(t)] = [t*/%]. From Theorem 1 it is seen that the MV-DSEE

The following theorem gives lower bounds on the asymptoti@/gorithm archives the order optimal finite-time regretfper
and finite-time regret under the measure of mean-variance #fance under the measure of mean-variance of observatians. W

observations. Proof is omitted due to space limit. also mention that the MV-DSEE policy with the parameter set-

Proof is omitted due to space limit.

u
Theorem 1 Consider a risk-averse MAB problem formulation
under the measure of mean-variance of observations Avith ()] = [£(t)logt] (14)
0. The asymptotic regret of any poliaysatisfies, for some con- ’

stantsc > 0 andTp € N, with f(t) a positive increasing unbounded function, achieves an

asymptotic regret performance©f f (¢) log t) with no assump-
tion onA. This means the asymptotic performance can get close

The finite-time regret of any polieysatisfies, for some con- t0 logarithm up to such a functiofi(¢). For examplef(t) can

clogT
A2

RI(T) > forall 7 > Tj. (10)

stantsc > 0 andTp € N, be set tdog t or y/logt.
RI(T) > ¢1?3 forall T > Tp. (12)

4. MEAN-VARIANCE OF TOTAL REWARD

3.2. Risk-Averse Learning Algorithms
The fi laorith ider here i . f thesita The risk-neutral MAB optimizes the expected total reward ob
e first algorithm we consider here is a variation of thesias . ;nqq by a policyr up to timeT. The objective in the second

UCB policy developed in [11] for risk-neutral MAB. This risk risk mitigation model we study here is to optimize the mean-

averse learning algorithm, referred to as MV-UCB, assigns 8variance of total reward up to tim&. The regret under this
index(t) to each arm and plays the arm with the smallest inde)fnodel is given by

at timet. The index depends on the sample mean-variance cal-

culated from past observations and the number of timesttleat t T

arm has been played up to timeSpecifically, the index of arm RN(T) = f(Z X)) — T, (15)

1 attimet is given by )

logt (12) where the first term is the mean-variance of the total rewhrd o
tained by policyr and the second term is the mean-variance

Ti(t)’
hereb i i " h lue d d the ri Ef the total reward achievable when the arm reward models are
wherebis a policy parameter whose value depends on the MSg, ;- parallel to Lemma 2, the following lemma gives an ex-

mheasure.b Tlhe regret performance of MV-UCB is given in thepression of the regret under the measure of mean-variance of
theorem below. total reward in terms of; andA;.
Theorem 2 Set the value of in the MV-UCB policy such that

b > % The regret offered by the MV-UCB policy under Lemma 3 The regret of a policyr under the measure of mean-
the measure of mean-variance of observations is upper ind variance of total reward can be written as
by

K

2

Ry o) < (P BL 4 9)(Ai+2rh). (13)  RO(T) =3 En(T)A:+ B[} (r: — Er)li)’). (16)
i i i=1 itx

L) = E(t) b
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4.1. Lower Bounds on Regret

The minimum asymptotic regret growth rate under the measui
of mean-variance of total reward can be shown to be logaritF
mic. This follows readily from the regret lower bound under
the classic risk-neutral MAB formulation (see [11, 18]).t8Biks
are omitted due to space limit. Next, we consider the finitet
regret under the measure of mean-variance of total rewadd at
show that it grows at least linearly with time. In other wards
for any policyr and any time horizoff’, there exists an assign-
ment of distributions to the arms that renders sublineareteg
orders impossible. The reason behind this result can be inti
itively understood by examining the trade-off betweenaay
and risk-aversion. The classic MAB problem is known to ad-
dress the exploration-exploitation trade-off in learnirigre, we
find a higher order trade-off between learning and risk-sioer - -
The consequence of learning manifests in the dependenay-of ¢

rent actions on past observations. This dependency onmanddrig. 1. The effect of parametdr on the performance of MV-
observations, however, leads to randomness in the outcéme OCB policy under different measures.

algorithm, causing uncertainty. In the light of Lemma 3,dnhc
be said upper bounding the number of times a suboptimal a~
m is played results in an inevitable variancerin Theorem 3
formally states this result. Proof is omitted due to spawétli

Theorem 3 Consider a risk-averse MAB problem formulation
under the measure of mean-variance of total reward. Theefinit
time regret of any policyr satisfies, for some constants> 0
andT; € N,

RA(T)>cT  forall T > Ty. 17)
Fig. 2. Comparison between regret performance of MV-UCB
4.2. Risk-averse Learning Algorithms and MV-DSEE algorithms whed = 0.

After some modifications to policy parameters, both the MV-

UCB and the MV-DESS polices apply to the risk mitigation is played during the exploration sequence. The uncertairihe

model_ under the measure of _mean-vanance_of total rewar. Tnaxploitation sequence causes only a constant amount atregr
following theorem states their performance in terms of gsym

totic regret order.

Theorem 4 Set the value of in the MV-UCB policy such that
b > % The regret offered by the MV-UCB policy under
the measure of mean-variance of total reward is upper bodnde,

5. SIMULATIONS

In this section, we provide numerical experiments on théoper

by mance of the algorithms. Fig 1 shows the performance of MV-
@ log? T UCB policy with different values of parameterUnder the mea-
Ryfy_ves(T) = O( Al ). (18)  sure of mean-variance of observations the best performiance

L . obtained withh = 1.5 while under the measure of mean-variance
Set the cardinality of exploration sequenéét)| = [ f(t) logt],  of total reward the best performance is obtained with 2.5.

with f(¢) a positive increasing_unbounded function. The regre‘sl-hiS result confirms that the parameteneeds to be tuned dif-
offe_red by the MV-DSEE po_llcy under the measure of mear}érently because of the different objectives under two-askrse
variance of total reward satisfies models. The higher value éfunder the model of mean-variance
2 _ of total reward shows a higher rate of exploration under this
Barv-pspp(T) = O (t)logt). (19) model. The experiment is run ondaarmed bandit with nor-
For A = 0, similar to the case under the measure of meanmal distributions whergy, = 0.1, us = 0.15, puz = 0.2, pg =

variance of observations, MV-UCB policy shows a poor perfor 0.25,0% = 1, 02 = 1.5, 02 = 2, 03 = 2.5. Fig. 2 compares the
mance. The MV-DSEE policy achieves téf (¢) log t) asymp-  regret performance of the MV-UCB and MV-DSEE algorithms
totic regret. This superior performance of MV-DSEE compari for a case wittA = 0. While the regret performance of the MV-
to MV-UCB policy, in this case, is due to the deterministimst ~ UCB approaches to linear with time, the MV-DSEE algorithm
ture of the MV-DSEE policy. The cardinality of exploratioe-s shows anO(7'%/3) regret performance. The experiment is run
quence predetermines the number of times each suboptimal apn a2-armed bandit with normal distributions.
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