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ABSTRACT

Multidimensional Scaling (MDS) refers to a class of dimensional-
ity reduction techniques applied to pairwise dissimilarities between
objects, so that the interpoint distances in the space of reduced di-
mensions approximate the initial pairwise dissimilarities as closely
as possible. Here, a unified framework is proposed, where the MDS
is treated as maximization of a correntropy criterion, which is solved
by half-quadratic optimization in a multiplicative formulation. The
proposed algorithm is coined as Multiplicative Half-Quadratic MDS
(MHQMDS). Its performance is assessed for potential functions as-
sociated to various M -estimators, because the correntropy criterion
is closely related to the Welsch M -estimator. Three state-of-the-art
MDS techniques, namely the Scaling by Majorizing a Complicated
Function (SMACOF), the Robust Euclidean Embedding (REE), and
the Robust MDS (RMDS), are implemented under the same condi-
tions. The experimental results indicate that the MHQMDS, relying
on the M -estimators, performs better than the aforementioned state-
of-the-art competing techniques.

Index Terms— Multidimensional scaling, robustness, M -
estimators, correntropy, half-quadratic optimization

1. INTRODUCTION

Multidimensional Scaling (MDS) has been widely used for the vi-
sualization of hidden structures among the objects in a geometric
space. It can be treated as a transformation yielding a geometric
model so that the resulting interpoint distances between objects in
the new space approximate the initial pairwise dissimilarities as
closely as possible. MDS algorithms were firstly inaugurated in
psychology [1]. The spectrum of their applications has been ex-
panded to include dimensionality reduction [2], graph drawing [3],
phone callers’ social network visualization [4], texture mapping on
arbitrary surfaces [5], and localization of nodes in a wireless sensor
network [6]. Recently, a semantic MDS for open-domain sentiment
analysis was developed [7].

However, the traditional techniques for the solution of the MDS
problem, like the classical MDS [1] and the scaling by majorizing
a complicated function (SMACOF) [8], despite their simplicity, are
not robust when the initial dissimilarities are contaminated with out-
liers. Even a single outlier in the dissimilarity matrix may distort
severely the solution of the classical MDS algorithm, because the
noise is propagated to each element of the distance matrix through
the double-centering process involved [9, 10].

The motivation for this paper stems from the insight that by em-
ploying M -estimators in the solution of the MDS problem, robust-
ness to outliers is gained. In particular, when the dissimilarity matrix

is contaminated with outliers, the following novel contributions are
made: 1) A framework is developed in order to estimate the MDS
embedding, that is based on half-quadratic (HQ) minimization in
combination with M -estimators; 2) An efficient algorithm for find-
ing the MDS solution is proposed, which is based on the multiplica-
tive form of the HQ; 3) The Welsch M -estimator, which is closely
related to the maximum correntropy criterion, is thoroughly studied
for solving the MDS problem.

Notation: Scalars are denoted by lowercase letters (e.g., λ1),
vectors appear as lowercase boldface letters (e.g., x), and matri-
ces are indicated by uppercase boldface letters (e.g., X). The ij-th
element of X is represented by [X]ij or xij , while ( )T denotes
transposition. If X is a square matrix, then X−1 denotes its in-
verse and tr(X) is its trace. I stands for the identity matrix with
compatible dimensions, diag(x) denotes a square diagonal matrix
with the elements of vector x on the main diagonal, while diag(X)
yields a column vector formed by the elements of the main diago-
nal of X. The i-th row of a matrix X is declared by the row vec-
tor xi, while the j-th column is indicated with the column vector
xj . If |·| denotes the absolute value operator, then, for x ∈ Rn×1,
‖x‖1 =

∑n
i=1|xi| and ‖x‖2 =

√∑n
i x

2
i are the �1 and �2 norms

of x, respectively. The Frobenius norm of X ∈ Rn×m is defined as

‖X‖F =
√∑n

i=1

∑m
j=1 x

2
ij .

2. ROBUST MDS APPROACHES

Let N denote the number of objects and d be the embedding dimen-
sion. In graphical representations, the value of d is either 2 or 3.
Let ∆ = [δij ] denote the pairwise dissimilarity matrix, where δij ,
i, j = 1, 2, ..., N refers to the dissimilarity between the objects i
and j. The resulting embedding in the d dimensional space is repre-
sented by X = [x1|x2|, ..., |xN ]T ∈ RN×d. That is, the i-th object
is mapped to xi = (xi1, xi2, ..., xij , ..., xid)

T ∈ Rd×1, where xij

is the j-th coordinate of xi. Let D(X) = [dij(X)] ∈ RN×N denote
the distance matrix having as ij-th element the �2 norm between xi

and xj , i.e., dij(X) = ‖xi − xj‖2. It can be shown that

[D(X)]2 = diag(diag(XXT ))E+E diag(diag(XXT ))−2XXT

(1)
where E is a N × N matrix with all its elements equal to one and
[D(X)]2 denotes the Hadamard product of D(X) with itself. Ac-
cordingly, the elements of the matrix [D(X)]2 are the squared dis-
tances.

The MDS is a non-linear optimization problem, where the mini-
mization of distance distortions is sought. A least squares loss func-
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tion that measures the goodness of fit is the raw stress defined as:

σr(X) =
N∑
i=1

N∑
j=i+1

(δij − dij(X))2
�
=

N∑
i<j

(δij − dij(X))2. (2)

The fragility of stress to outliers, as a least squares loss function,
has inspired many researchers to investigate possible alternatives
in order to eliminate the influence of gross errors. The cost func-
tion

∥∥∆2 −D2
∥∥
1

was employed in the robust Euclidean embed-
ding (REE) [10] in order to minimize the influence of noise. Other
related ideas can be found in [11, 12].

In the robust MDS (RMDS) [13], the variable oij is inserted to
model any outlier in δij . That is, each dissimilarity element is mod-
eled as δij = dij(X) + oij + εij , where εij denotes a zero-mean
independent random variable modeling the nominal errors. In ad-
dition, the �1 norm of the N × N outlier matrix is included in the
optimization problem due to the sparseness of the outliers, suggest-
ing that a small amount of them admits non-zero values. Accord-
ingly, the following optimization problem is solved by alternating
minimization [13]:

(Ô, X̂) = argmin
O,X

N∑
i<j

(δij − dij(X)− oij)
2 + λ1

N∑
i<j

|oij | (3)

where ‖O‖1 = 2
∑

i<j |oij |. The solution of (3) at iteration t+1 is
given in closed form as [13]:

o
(t+1)
ij = Sλ1(δij − dij(X

(t))) (4)

X(t+1) = L† L+(O
(t+1),X(t))X(t) (5)

where Sλ1(x) = sign(x)(|x| − λ1
2
)+ is the soft-thresholding oper-

ator with (·)+ = max{·, 0}. L is a symmetric matrix with diagonal
elements [L]ii = N − 1 and off-diagonal elements [L]ij = −1.
Since L is not full rank, the Moore-Penrose pseudoinverse is used,
which is defined as L† = N−1J, where J = I − N−1 e eT is
the centering operator and e is the N × 1 vector of ones. In (5),
L+(O,X) is the Laplacian matrix having elements:

[L+(O,X)]ij =

⎧⎨
⎩

−(δij − oij) d
−1
ij (X) (i, j) ∈ S(O,X)

0 (i, j) ∈ T(O,X)

−∑N
k=1,k �=i[L+(O,X)]ik (i, j) ∈ Q(O,X)

(6)
where S(O,X) = {(i, j) : i �= j, dij(X) �= 0, δij > oij},
T(O,X) = {(i, j) : i �= j, dij(X) = 0, δij > oij} and
Q(O,X) = {(i, j) : i = j, δij > oij}. The iterations in (5)
start with a randomly chosen initial configuration X(0) and a zero
initial outlier matrix O(0).

It is seen that (5) is still vulnerable to outliers. M -estimators,
which constitute a generalization of maximum likelihood estima-
tors [14], replace the least squares loss function, which is sensi-
tive to outliers, with another, which increases less than the squared
error and thus it is less fragile to outliers. Accordingly, it is pro-
posed to seek for the M -estimator of X passing the residual LX −
L+(O

(t+1),X(t))X(t) through a function φ(·) that is non-negative
and differentiable with respect to X and to impose a regularization
term associated to the Frobenius norm of X, i.e.,

X̂ = argmin
X

{
φ(LX−L+(O

(t+1),X(t))X(t))+λ2 ‖X‖2F
}

(7)

The optimization problem (7) is solved by HQ minimization in Sec-
tion 4 and links are established with the maximum correntropy cri-
terion, which is related to the Welsch M -estimator, in Section 3. By
doing so, a unified framework emerges that extends the work in [13].

3. CORRENTROPY

The (cross) correntropy was first introduced as a generalized cor-
relation function [15]. It is a nonlinear similarity metric between
two arbitrary random variables W and Y defined as Vσ(W,Y ) =
E[gσ(W −Y )], whereE[·] is the expectation operator and gσ(x) =

exp(− x2

2σ2 ) is the Gaussian kernel with kernel size σ [16]. When
a finite amount of data (yi, wi), i = 1, 2, . . . , N is available, the
sample estimator of correntropy is used, i.e.:

V̂σ(W,Y ) =
1

N

N∑
i=1

gσ(wi − yi). (8)

The correntropy measure is symmetric, positive, and bounded, at-
taining a maximum for W = Y . Its properties depend on the kernel
size, whose selection is application specific. For two random vectors
W = (w1, w2, . . . , wN )T and Y = (y1, y2, . . . , yN )T , the Corren-
tropy Induced Metric (CIM) is defined as [16]

CIM(W,Y ) =

[
gσ(0) − 1

N

N∑
i=1

gσ(wi − yi)

]1/2
. (9)

The CIM possesses the properties of symmetry, non-negativity and
triangle inequality. In addition, CIM(W,Y ) = 0, if and only if
W = Y [16]. The Maximum Correntropy Criterion (MCC) aims
at maximizing V̂σ(W,Y ). Since the CIM is a decreasing function
of correntropy, the maximization of correntropy is equivalent to the
minimization of the CIM. The Gaussian kernel makes the MCC a
local criterion [16], restricting the analysis to a local region of the
joint space of w and y. Indeed, the correntropy is determined by
the kernel function along the line w = y. On the contrary, the mean
squared error (MSE) is a global criterion, where all the sample errors
conduce considerably to its estimation. For gross errors, the MSE
increases quadratically, while the CIM is close to 1, mitigating the
effect of outliers.

The correntropy is closely related to the M -estimators [16]. By
setting φ(x) = 1 − gσ(x), the CIM is equivalent to the Welsch
M -estimator. The MCC has proven to be an appropriate similarity
metric in non-linear, non-Gaussian, signal processing applications,
such as robust regression [16], pattern recognition [17], feature se-
lection [18], and subspace clustering [19, 20].

4. AN HQ FRAMEWORK FOR MDS WITH OUTLIERS

In this section, the optimization problem (7) is solved with HQ min-
imization [21,22]. There are two forms of the HQ, namely the addi-
tive form and the multiplicative one. Here, due to space limitations,
we are confined to the latter. Let φ(x) be a potential function that
satisfies the conditions in [21]. Then, a conjugate (dual) function
ψ(·) exists for fixed x, such that [21]:

φ(x) = inf
p∈R

{Q(x, p) + ψ(p)} (10)

where Q(x, p) = px2 is a quadratic function of x, and p is an aux-
iliary variable determined by the minimizer function δ(·) related to
φ(·). Table 1 lists the potential function φ(x) : R → R and the
minimizer function δ(x) : R → R for the multiplicative form of the
HQ for various M -estimators.

Let Y = L+(O
(t+1),X(t))X(t). The objective function in (7)

takes the form:

J(X,p) =
N∑
i=1

pi

∥∥∥(LX−Y)i
∥∥∥2

2
+

N∑
i=1

ψ(pi) + λ2 ‖X‖2F (11)
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Table 1: Potential functions of M -estimators and their minimizer
functions for the multiplicative form of HQ

M-estimator Potential Function Minimizer Function

�2 φ(x) = x2/2 δ(x) = 1

�p φ(x) =
|x|p
p

p ∈ (1, 2] δ(x) = |x|p−2

Fair φ(x) = a2( |x|
a

−log(1 + |x|
a
)) δ(x) = 1

1+
|x|
a

Welsch φ(x) = a2

2
(1− exp(−x2

a2 )) δ(x) = exp(−x2

a2 )

Cauchy φ(x) = a2

2
log(1 + (x

a
)2) δ(x) = 1

1+( x
a
)2

where p is the vector of the auxiliary variables. It is seen that (11)
depends on the weighted sum of the squared �2 norms of the resid-
uals LX − Y for each row. Let (X̂, p̂) = argmin

X,p
J(X,p). Due

to the fact that the auxiliary variables depend only on the minimizer
function δ(·), the terms ψ(·) can be omitted as being fixed, when
we minimize w.r.t. X. Thus, a local minimizer (X,p) is estimated
using the following alternating minimization:

p
(t+1)
i = δ

(∥∥∥(LX(t) −Y)i
∥∥∥
2

)
(12)

X(t+1) = argmin
X

{
tr((LX−Y)TP(t+1)(LX−Y))

+ λ2tr(X
TX)

}
(13)

where P(t+1) = diag(p(t+1)) is a diagonal matrix with ii-th ele-
ment equal to p(t+1)

i . Setting the derivative of (13) w.r.t. X equal to
zero, a closed-form solution is obtained, i.e.:

X(t+1) = (LT P(t+1) L + λ2I)
−1 LT P(t+1) Y. (14)

At each iteration, the auxiliary variables p(t+1)
i represent the weight

that regulates the impact of
∥∥(LX − Y)i

∥∥
2
. The introduction of M -

estimators reduces the influence of the outliers, since p(t+1)
i always

admits a low weight, as is manifested by the presence of δ(·) in (12)
that is associated to the potential function φ of an M -estimator. The
multiplicative form of the HQ optimization is essentially an iterative
reweighted least-squares minimization, that has been used in robust
regression in order to mitigate the outliers influence. The complete
procedure for the solution of (7) by the multiplicative form of HQ is
outlined in Algorithm 1. The initial configuration X(0) is chosen ran-
domly, while the initial outlier matrix O(0) is set to zero. The basic
property J(X(t+1),p(t+1)) ≤ J(X(t),p(t+1)) ≤ J(X(t),p(t)) of
the HQ guarantees that the objective function is reduced at each iter-
ation until its convergence [21].

5. NUMERICAL TESTS

The multiplicative form of the HQ minimization for the MDS
(MHQMDS) was implemented in Matlab and tested on several sets
of dissimilarity matrices ∆. In order to evaluate and benchmark the
MHQMDS, three well known MDS techniques were implemented
in the same environment and tested on the same dissimilarity matri-
ces. These techniques were: a) the popular SMACOF algorithm [8],
b) the subgradient version of the REE algorithm [10], and c) the

Algorithm 1 Multiplicative form of the HQ minimization for MDS
(MHQMDS)

Input: Initial outlier matrix O(0) and initial configuration X(0)

Output: Outlier matrix O(t+1) and coordinate matrix X(t+1)

1: for t = 0, 1, 2, . . . do
2: Find each entry of O(t+1) via (4)
3: Update p(t+1)

i via (12) with L+ as in (6)
4: Update X(t+1) via (14)
5: end for

RMDS algorithm [13]. In all techniques, the authors’ recommenda-
tions were strictly followed, while the implementation was intended
to achieve the best possible performance.

The embedding quality for each algorithm was evaluated with
respect to four figures of merit: a) the normalized outlier-free stress

σ(Ô, X̂) =

√∑
(i,j)∈Q(δij−dij(X))2

∑
(i,j)∈Q δ2ij

, as in [13], where Q denotes

the set of outlier-free dissimilarities (i.e., when [O]ij = 0), b) the
number of outliers Ŝ as in [13], c) the raw stress σr(X) between
the distances of the final embedding and the initial dissimilarities,
and d) the Procrustean goodness-of-fit �, standardized by a measure
of the scale for X1. The last criterion can be used only for fixed
configurations.

In order to assess the implemented methods, 100 Monte Carlo
simulations were run using a different random initial configuration
X(0) on each run. The reported figures of merit refer to the run,
where the RMDS algorithm has exhibited the minimum value in raw
stress σr(X), namely when the final embedding was closer to the
initial configuration. The algorithms RMDS and MHQMDS termi-

nated when
∥∥∥X(t+1) −X(t)

∥∥∥
F
/
∥∥∥X(t+1)

∥∥∥
F

was less than 10−6 or

when the number of iterations reached 5000.
The data set, that was used to evaluate the performance of the

MHQMDS algorithm, comprised a rectangular withN = 100 points
in the two-dimensional space. The bottom-left point was at (1, 1),
while all points were equidistant from their vertical and horizontal
neighbors by one unit. Each element of the initial dissimilarity ma-
trix ∆ was contaminated with a background error εij , derived from
a zero mean truncated Gaussian distribution with variance σ2 = 0.1
and threshold −dij(X), in order to avert negative values in ∆. The
indices of the outliers were chosen randomly, while their values were
derived from a uniform distribution in [0,40]. The outlier contami-
nation percentage 	 was set at 40%. Let ah be the parameter of
the Huber M -estimator. Taking into account the equivalence with
Huber M -estimator for λ1 = 2ah [23] and that ah = 1.345σ yields
95% asymptotic efficiency for the normal distribution [24], λ1 was
set to 0.851 for both the RMDS and the MHQMDS algorithms.

Table 2 gathers the figures of merit related to the embedding
quality delivered by the SMACOF, the REE and the RMDS algo-
rithms. Due to the lack of space, only the raw stress σr(X) of the
MHQMDS algorithm is plotted for various values of λ2 ∈ [1, 100]

in Figure 1. The plots of the normalized outlier-free stress σ(X̂, Ô),
the number of outliers Ŝ and the standardized Procrustean goodness-
of-fit � are roughly the same with that of the raw stress. The parame-
ter awas set equal to 316.228, 14, and 10 for the Welsch, the Cauchy
and the Fair M -estimator, respectively. It is obvious that these M -

1In Matlab, the measure of the scale for X is given by
sum(sum((X-repmat(mean(X,1),size(X,1),1)).ˆ2,1)).
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Table 2: Figures of merit judging the embedding quality obtained
by the SMACOF, the REE, and the RMDS algorithms applied to
the square data set whose 40% of elements have been corrupted by
outliers.

� = 40% SMACOF REE RMDS

Normalized outlier-free stress σ(X̂, Ô) 0.6720 0.7892 0.0452

Estimated outliers Ŝ - - 3329

Procrustean goodness-of-fit � 0.9029 0.0113 0.0063

Raw Stress σr(X) 395494 2010.1 1730.9

estimators, when they are employed in the multiplicative form of
the HQ, outperform the state of the art approaches for a wide range
of values admitted by λ2. The performance of �p M -estimator for
p = 1.999 was comparable to that of the Welsch M -estimator.
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Fig. 1: Raw stress σr(X) of the MHQMDS algorithm.

The embeddings delivered by the RMDS and the MHQMDS al-
gorithms, after being matched to the true embedding via Procrustes’
analysis, are demonstrated in Figure 2. The MHQMDS embedding
was obtained by the Welsch M -estimator for λ2 = 100. It is obvi-
ous that the MHQMDS embedding, whose raw stress σr(X) is equal
to 386.7, is slightly closer to the true embedding than that of the
RMDS, whose σr(X) is 1730.9. This is also validated by the values
of the Procrustean goodness-of-fit �, which were 0.0063 and 0.0019
for the RMDS and MHQMDS algorithms, respectively.

5.1. Discussion

It is apparent that the proposed algorithm outperforms the state of the
art approaches, since it accomplishes a more accurate embedding
than the RMDS for a wide range of λ2 values. The SMACOF is
extremely inefficient, while the REE obtains a better embedding than
the SMACOF, but still this is inferior than that of the RMDS.

The efficiency of M -estimators is determined highly by the
proper selection of the parameter a, related to the kernel size of
the Welsch potential function. The experimental results validate that
when a is large, the region where the �2 norm is applicable (and con-
sequently the MSE applies) expands. Under these circumstances,
the performance of the WelschM -estimator approximates that of the
�2 M -estimator. Contrarily, a small kernel size shrinks the region
where the �2 norm applies (while the �1 and �0 regions are enlarged).
In such a case, the range of values of λ2 for which the MHQMDS
is more efficient than the RMDS, w.r.t. raw stress, is much smaller.
However, this choice leads to a smaller λ2 value, where the raw
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Fig. 2: MHQMDS and RMDS embeddings after being matched to
the true embedding via Procrustes’ analysis.

stress σr(X) attains its minimum, accelerating significantly the find-
ing of the optimal embedding. These remarks were also validated
for the Cauchy and Fair M -estimators. However, the value of a
that induces an equivalent performance with the �2 M -estimator is
different for each M -estimator and is highly data-dependent.

Parameter setting depends on the user’s objective. If the objec-
tive is a large range of values for λ2 where the MHQMDS is more
efficient than the RMDS w.r.t. the raw stress, then a large value of a
should be chosen. On the contrary, if the objective is a fast finding
of the true configuration, then a small value of a is sufficient.

If the initial dissimilarity matrix is not available, the normalized
outlier free stress σ(X̂, Ô) and the number of outliers Ŝ can only be
used as figures of merit. Under these circumstances, the MHQMDS
algorithm is implemented for a plausible range of values for λ2, se-
lecting a small value of the parameter λ1, and then the embedding
with the minimum value of the Ŝ is selected. Extensive experimen-
tal results have proven that this embedding is close to the embedding
where the raw stress σr(X) is minimum, which indicates that the
true configuration is well approximated.

In many cases, the multiplicative form of the HQ minimization
for the MDS entailed fewer iterations in order to converge than the
RMDS, rendering it slightly faster. It can be proven that the com-
putational complexity of the MHQMDS algorithm, which involves
alternating updates of O, p and X, is O(N3) at each iteration.

6. CONCLUSIONS

A new efficient HQ framework, using the multiplicative form, has
been introduced for solving the MDS problem in an environment
contaminated by outliers. The experimental findings have demon-
strated that the proposed algorithm performs substantially better
than the state-of-the-art. For any given configuration contaminated
with outliers, it is possible to find an M -estimator so that the pro-
posed MHQMDS outperforms the state-of-the-art MDS approaches.
Future research will address techniques for estimating the kernel
size of the potential function within the MHQMDS.
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