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ABSTRACT

Complex phenomena involving pairwise interactions in natural and
man-made settings can be well-represented by networks. Besides
statistical and computational analyses on such networks, visualiza-
tion plays a crucial role towards effectively conveying “at-a-glance”
structural properties such as node hierarchy. However, most graph
embedding algorithms developed for network visualization are ill-
equipped to cope with the sheer volume of data generated by mod-
ern networks that encompass online social interactions, the Internet,
or the world-wide web. Motivated by the emergence of nonlinear
manifold learning approaches for dimensionality reduction, this pa-
per puts forth a novel scheme for embedding graphs using kernel
matrices defined on graphs. In particular, a kernelized version of
local linear embedding is devised for computation of reconstruction
weights. Unlike contemporary approaches, the developed embed-
ding algorithm entails low-cost, parallelizable, and closed-form up-
dates that can easily scale to big network data. Furthermore, it turns
out that inclusion of embedding constraints to emphasize central-
ity structure can be accomplished at minimal extra computational
cost. Experimental results on Watts-Strogatz small-world networks
demonstrate the efficacy of the novel approach.

Index Terms— Graph embedding, local linear embedding, net-
work visualization, coordinate descent.

1. INTRODUCTION

Complex networks abound due to phenomena as diverse as online
social interactions, financial transactions among banks, and the In-
ternet [20]. Visual analysis of such networks is fundamentally chal-
lenging due to the sheer volume of data often involved. Network
visualization is an application of graph embedding which maps each
node to a point in Euclidean space. The rising complexity of net-
works presents new challenges and opportunities for graph embed-
ding tools that effectively capture global patterns and convey mean-
ingful structural information such as hierarchy, similarity and natural
communities [14].

Traditional visualization algorithms on small graphs tend to em-
phasize aesthetics like minimal edge crossing over underlying struc-
tural patterns, see e.g., [8, 17, 21]. As a result, they are ill-equipped
to visualize larger graphs. Nevertheless, several approaches have
been developed for embedding graphs while preserving specific
structural properties. Pioneering methods (e.g., [17]) leverage mul-
tidimensional scaling (MDS), which seeks a low-dimensional rep-
resentation of data in which pairwise distances between embedding
coordinates are as close to the dissimilarities between the original
data points as possible [4].
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Spectral embedding which amounts to principal component
analysis (PCA) on the rows of the graph adjacency matrix is advo-
cated in [23]. The structure-preserving embedding algorithm [25]
solves a semidefinite program with linear topology constraints so
that a nearest neighbor algorithm can recover the graph edges from
the embedding. Certain visual analytics approaches emphasize
community structure with applications to community browsing in
graphs [28]. Concentric graph layouts developed in [1, 2, 5] capture
notions of node hierarchy by placing the highest ranked nodes at the
center of the embedding.

Since graph embedding boils down to a dimensionality reduc-
tion task, it is no surprise that “workhorse” approaches (e.g., PCA
and MDS) have risen to prominence in network visualization. How-
ever, manifold learning approaches have not received sufficient at-
tention for embedding graphs. In order to effectively preserve the
local graph topology structure, the present paper advocates a novel
approach that leverages local linear embedding (LLE) [24]. Unlike
traditional LLE which presupposes the availability of high dimen-
sional vectors, the novel approach permeates benefits from kernel-
based methods to compute the reconstruction weights per node. In
addition, the hidden cost of selecting neighbors per datum is easily
circumvented by resorting to single-hop neighbors per node.

The growing interest in analysis of large networks has priori-
tized the need to effectively capture hierarchy over aesthetic appeal
in visualization. For instance, a hierarchy-aware visual analysis of a
global computer network is more useful to security analysts trying to
protect the most critical nodes from a virus attack. Layouts of metro-
transit networks that clearly show terminals routing the bulk of traf-
fic convey an informative picture about the most critical nodes in the
event of a terrorist attack. This paper incorporates centrality con-
straints in order to capture node hierarchy. Centralities are a family
of well-defined measures of node importance that can facilitate hier-
archical ordering of graph nodes; see e.g., [10, 22]. The developed
algorithm is simple, incurs a low computational overhead, outper-
forms spectral approaches in running time, and effectively captures
both local and hierarchical structure.

The rest of the paper is organized as follows. Section 2 formally
states the problem and Section 3 focuses on the novel kernel-based
approach. Centrality constraints are introduced in Section 4, exper-
imental results are presented in Section 5, and concluding remarks
are given in Section 6.

2. PROBLEM STATEMENT

Consider a network represented by an undirected graph G = (V, E),
where E denotes the set of edges, and V the set of vertices with
cardinality |V| = N . Suppose the structure of G is captured by an
adjacency matrix A whose (i, j)-th entry (hereafter denoted by aij)
is zero only if edge (i, j) /∈ E , otherwise it denotes the weight of
(i, j). Given G and a prescribed embedding dimension p (typically
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p ∈ {2, 3}), the graph embedding task is tantamount to searching for
the set of p × 1 vectors X := {xi}Ni=1 which “effectively” capture
the underlying local graph structure.

This paper advocates LLE, a non-linear dimensionality reduc-
tion technique with well-documented merits for preserving local
structure by assuming that high-dimensional input data are sampled
from a low-dimensional manifold [15, Chap. 14]. LLE accom-
plishes this by approximating each datum by a linear combination
of its neighbors determined by a well-defined criterion followed by
construction of a lower dimensional embedding that best preserves
the approximations. The next section adapts this manifold learning
approach to the graph embedding problem.

3. KERNEL-BASED GRAPH EMBEDDING

Prior to a formal description of the novel graph embedding ap-
proach, it is necessary to give a brief outline of LLE. Suppose
{yi ∈ Rq}Ni=1 are data points sampled from a nonlinear man-
ifold within high dimensional space Rq . LLE seeks the low-
dimensional vectors {xi ∈ Rp}Ni=1 (p ≪ q) that preserve the
local neighborhood structure on the manifold. To accomplish
this, one first constructs the neighborhoods {Ni}Ni=1 indexed per
datum. Typically, Ni is set to the K-nearest neighbors of i, or
Ni := {yj ∈ Rq : ∥yi − yj∥2 ≤ ϵ, ϵ > 0, j = 1, . . . , N} . With-
out loss of generality, assuming |Ni| = K, each point is then fit
to a linear combination of its neighbors by solving the following
constrained least-squares (LS) optimization problem

arg min{
wi1,...,wiK∑
j∈Ni

wij=1

}
∥∥∥∥∥∥yi −

∑
j∈Ni

wijyj

∥∥∥∥∥∥
2

2

i = 1, . . . , N (1)

where {wij}Kj=1 are the K reconstruction weights for point i and
the constraint enforces shift invariance. Setting wij = 0 for j /∈ Ni,
the final step determines {xi ∈ Rp}Ni=1 that preserve neighborhood
structure through the reconstruction weights by solving

arg min
x1,...,xN∑N
i=1 xi=0

1
N

∑N
i=1 xix

⊤
i =I



N∑
i=1

∥∥∥∥∥xi −
N∑

j=1

wijxj

∥∥∥∥∥
2

2

. (2)

The equality constraints center the embedding at the origin with unit
sample covariance, thus avoiding the trivial all-zero solution.

For the general graph embedding problem, the only input data
one has available are edge connectivities. Although the high dimen-
sional vectors {yi}Ni=1 are generally non-existent, it is possible to
cast the optimization problem (1) entirely in terms of the inner prod-
ucts y⊤

i yj for all i, j ∈ {1, . . . , N}. This brings to bear many
of the merits of kernel methods entailing computations involving
only inner products of transformed feature vectors, ϕ(y), namely
kij(yi,yj) = ϕ⊤(yi)ϕ(yj). The problem is now reduced to se-
lection of an appropriate kernel matrix K ∈ RN×N with [K]ij :=
kij(yi,yj). A few examples of K include:

i. The doubly-centered dissimilarity matrix K = −(1/2)J∆(2)J

where [∆(2)]ij denotes the squared geodesic distance between
nodes i and j, or any other dissimilarity metric on the graph,
and J := I − N−111⊤ denotes the centering operator [4]. In
this case, K is reminiscent of the kernel adopted by classical
MDS.

ii. The Penrose-Moore pseudoinverse of the graph Laplacian i.e.,
K = L†, where L := A−D, A ∈ {0, 1}N×N denotes the bi-
nary graph adjacency matrix, and D := diag(A1). It turns out
that L† admits an intuitive interpretation as a similarity matrix
based on random walk distances on graphs [9].

iii. Matrix K = AA⊤, where A ∈ {0, 1}N×N , and [AA⊤]ij
counts the number of single-hop neighbors shared by nodes i
and j.

Note that determination of {Ni}Ni=1 in LLE is rather costly and
entails O

(
qN2

)
complexity with q ≫. The proposed graph embed-

ding strategy overcomes this bottleneck by setting Ni to the single-
hop neighborhood of node i in G. Let Yi := [ϕ(yi

1), . . . , ϕ(y
i
di
)]

collect the “virtual” transformed vectors associated with the single-
hop neighbors of i, where di denotes its degree. Furthermore, letting
wi := [wi1, . . . , widi ]

T , the LS fit (1) can be be written as

wi = argmin
{w: 1⊤w=1}

w⊤Kiw − 2w⊤ki (3)

where Ki := Y⊤
i Yi and ki := Y⊤

i ϕ(yi) are submatrices of K
indexed by the elements of Ni. Using the theory of Lagrange mul-
tipliers, one can readily solve for wi in (3). For large-scale graph
embedding, the weight computation step can be easily parallelized
over clusters of computing nodes. Each subproblem entails O(d3i )
complexity, which is manageable because typically di ≪ N .

The low-dimensional graph embedding can be obtained from the
reconstruction weights via (2), by solving for

arg min
X∑N

i=1 xi=0
1
N

∑N
i=1 xix

⊤
i =I


Tr

[
X⊤(I−W)⊤(I−W)X

]
(4)

where W⊤ := [w̃1, . . . , w̃N ], w̃ij = wij if j ∈ Ni, otherwise
w̃ij = 0, X⊤ := [x1, . . . ,xN ], and Tr(.) denotes matrix trace.
Note that the N × p embedding matrix X consists of the 2nd to the
(p+ 1)th least dominant eigenvectors of (I−W)⊤(I−W).
Remark 1. Typically |Ni| ≪ N , hence {w̃i}Ni=1 are sparse.
One can augment (3) with a sparsity-promoting penalty term
so that neighborhood selection is data-driven; that is, w̃i =
argmin

w̃
w̃⊤Kiw̃ − 2w̃⊤ki + γ∥w̃∥1 s.t. 1⊤w̃ = 1, where

γ > 0.
Remark 2. For large graphs, X can be efficiently computed via
the generalized power method (a.k.a. orthogonal iterations [18]) en-
tailing O(pN2) complexity. Furthermore, orthogonal iterations are
amenable to decentralized implementation; see e.g., [16].

Although this approach preserves the local graph topology
within single-hop neighborhoods, the spectral decomposition is not
scalable to larger networks. Moreover for large network visual-
ization tasks, one is often more interested in graph embeddings that
easily convey global properties such as node hierarchy or community
structure. Towards addressing these issues, the next section advo-
cates a novel framework for embedding graphs under hierarchical
constraints.

4. CENTRALITY CONSTRAINTS

In settings involving web-scale networks, meaningful graph embed-
ding for visualization purposes calls for emphasis of key structural
information over traditional aesthetic requirements. Several central-
ity measures on networks have been proposed for quantifying the
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relative importance of nodes over their peers e.g., node degree, close-
ness centrality, and PageRank [19]. Their capacity to succinctly es-
tablish hierarchical rankings of nodes (and edges) in a graph makes
them attractive for graph embedding tasks. Let C(G) := {ci}Ni=1

denote the set of centralities of G, with ci representing the central-
ity measure of node i. The goal here is to determine the embedding
{xi}Ni=1 that effectively “preserves” the centrality ordering in C(G).

The advocated approach involves incorporating centrality con-
straints in the final step (4); that is,

argmin
x1,...,xN

N∑
i=1

∥∥∥∥∥xi −
N∑

j=1

wijxj

∥∥∥∥∥
2

2

s. to ∥xi∥22 = f2(ci), i = 1, . . . , N. (5)

where f(ci) is a monotone decreasing function of ci to ensure that
more central nodes are placed closer to the center. The dropped 0-
mean constraint can be compensated for by a post-processing cen-
tering operation upon determination of {x̂i}Ni=1.

Note that (5) is non-convex with no global optimality guaran-
tees. However, it decouples over vectors {xi}Ni=1 which motivates
a block coordinate descent (BCD) approach [3]. The optimization
variables are divided into N blocks with xi corresponding to block
i. As a result, each iteration r cycles through all blocks solving

xr
i = argmin

x

∥∥∥∥∥x−
∑
j<r

wijx
r
j −

∑
j>r

wijx
r−1
j

∥∥∥∥∥
2

2

s. to ∥x∥22 = f2(ci). (6)

per block i. With vr
i :=

∑
j<r wijx

r
j +

∑
j>r wijx

r−1
j and λ ≥ 0

denoting a Lagrange multiplier, then

xr
i = argmin

x
∥x− vr

i ∥22 + λ(∥x∥22 − f2(ci)) (7)

whose solution is
xr
i =

vr
i

1 + λ
. (8)

Upon substituting (8) into the equality constraint in (6), one obtains
the closed-form per-iteration update

xr
i =

{
vr
i

∥vr
i ∥2

f(ci), if ∥vr
i ∥2 > 0

xr−1
i , otherwise.

(9)

Letting Xr denote the embedding matrix after r BCD iterations, the
operation X = (I−N−111⊤)Xr centers {xr

i }Ni=1 to the origin in
order to satisfy the shift invariance property of the embedding. Algo-
rithm 1 summarizes the steps outlined for the centrality-constrained
graph embedding scheme. It is assumed that the only inputs to the al-
gorithm are the graph topology G, the centrality measures, {ci}Ni=1,
the graph embedding dimension p, and the kernel matrix K.

5. NUMERICAL TESTS

This section presents numerical tests conducted on randomly
generated networks to demonstrate the effectiveness of the de-
veloped kernel-based graph embedding approach. The Watts-
Strogatz model was used to generate synthetic random graphs [26].
Given a prescribed number of nodes N , the average degree d̄,
and a parameter β ∈ [0, 1], the Watts-Strogatz model constructs
a d̄-regular ring lattice, and rewires each edge with probability
β. Twenty Watts-Strogatz graphs were generated this way with

Algorithm 1 Kernel-Based Graph Embedding
1: Input: G, C(G), K, ϵ, p
2: for i = 1 . . . N (in parallel) do
3: Set Ni to single-hop neighbors of i
4: Extract Ki and ki from K
5: Solve wi = arg min

w
w⊤Kiw − 2w⊤ki s. t. 1⊤w = 1

6: Set wij = 0 for j /∈ Ni

7: end for
8: Initialize X0, r = 0
9: repeat

10: r = r + 1
11: for i = 1 . . . N do
12: Compute xr

i according to (9)
13: Xr(i, :) = (xr

i )
T

14: end for
15: until ∥Xr −Xr−1∥F ≤ ϵ
16: X = (I− 1

N
11⊤)Xr
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Fig. 1. Comparison of running times of Algorithm 1 on Watts-
Strogatz graphs of increasing size benchmarked against spectral em-
bedding.

N ∈ {100n}20n=1, d̄ = 4, and β = 0.3. Hierarchical structure was
captured through closeness centrality, which is commonly defined as
ci := 1/

(∑
j∈V dij

)
, where dij denotes the geodesic distance be-

tween nodes i and j. The centralities were accordingly transformed
as follows

f(ci) =

(
cmax − ci
cmax − cmin

)
(10)

where cmax := maxi ci, and cmin := mini ci ∀i = 1, . . . , N .
First, the running time of Algorithm 1 was assessed based on an

implementation done on a commodity personal computer. Figure 1
plots running times for the weight computation step, the embedding
step, and the total running time (all in seconds) against the number of
nodes in the graph. In order to facilitate comparisons with contempo-
rary structure-preserving methods, the spectral embedding algorithm
of [23] was run for each graph. The plot depicts the corresponding
running times alongside those obtained by running Algorithm 1. It
turns out that Algorithm 1 outperforms spectral embedding by up
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Fig. 2. Graph embeddings for a Watts-Strogatz graph with N = 2, 000: (a) Centrality-constrained embedding with K1 = −1/2J∆(2)J;
(b) Centrality-constrained embedding with K2 = AA⊤; and (c) Centrality-agnostic embedding based on kernel matrix K1. The color bar
maps node colors to varying centrality values.
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Fig. 3. Boxplots (a) and (b) depict the spread of the centrality-
constrained embedding, while (c) and (d) are based on the centrality-
agnostic approach. It is clear that the higher appeal of the centrality-
based visualizations is due to the wider point spread, and fewer “out-
liers”.

to an order of magnitude when N > 500 nodes, hence it is well-
motivated for large network visualization tasks.

Figure 2 depicts visualizations of the Watts-Strogatz net-
work obtained by setting N = 2, 000. In Figure 2 (a) and (b),
centrality-constrained embeddings are plotted with kernel matrices
K1 = (−1/2)J∆(2)J and K2 = AA⊤, respectively. The appeal
for centrality-constrained embeddings is clear when compared with
Figure 2(c) which depicts a “centrality-agnostic” graph embedding
using K1. Here, the final weight preservation step entailed spectral
decomposition of (I − W)⊤(I − W), consistent with the original
LLE algorithm. It is clear that even for a moderately sized synthetic
graph, little meaningful information can be conveyed visually from
the centrality-agnostic embedding. For instance, it is not obvious
how an analyst would discern which nodes are most accessible

to peers, or those whose removal would compromise the rate of
information propagation over the network.

Assessment of the quality of a network visualization is gener-
ally a non-trivial and subjective task. In this paper, a rather simple
scheme based on the spread of the embedding per coordinate is advo-
cated. Figure 3 depicts boxplots of the embeddings in Figures 2 (a)
and (c). Boxplots (a) and (b) depict the distribution of the centrality-
constrained embedding coordinates, whereas (c) and (d) depict the
centrality-agnostic case. The plot shows that the centrality-based
embedding yields a wider point spread and fewer outliers, which
translates into higher visual appeal.

6. CONCLUSION

This paper develops a novel graph embedding scheme based on
LLE, a popular nonlinear manifold learning approach. LLE thrives
in settings where data are sampled from low-dimensional mani-
folds, where the goal is to preserve the local neighborhood structure.
Consistent with contemporary graph embedding approaches, one
typically only has access to the graph topology. It is shown that
a well-defined graph kernel suffices to compute the reconstruction
weights per node, circumventing the need to build feature vectors.
It turns out that the cost incurred by determination of the neigh-
borhoods is markedly reduced by selection of single-hop neighbors
per node. Furthermore, the weight determination step can be easily
parallelized with closed-form solutions per subproblem.

The need to capture meaningful structural patterns e.g., node hi-
erarchy, motivates a centrality-constrained approach which entails
constraining the weight preservation step. The resulting problem is
separable and the advocated approach resorts to BCD iterations with
closed-form per-block updates. The combination of parallel weight
determination and low cost BCD iterations leads to a more appealing
embedding algorithm than contemporary approaches based on PCA
and MDS for large network visualization. Tests conducted on sev-
eral small-world networks demonstrate the appeal of the developed
centrality-aware algorithm for capturing hierarchical patterns in net-
work visualizations. Due to space limitations, tests on big web-scale
networks are deferred to a more comprehensive version of the paper.
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