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ABSTRACT

The estimation of a probability density function is one of
the most fundamental problems in statistics. The goal is
achieving a desirable balance between flexibility while
maintaining as simple a form as possible to allow for
generalization, and efficient implementation. In this pa-
per, we use the maximum entropy principle to achieve
this goal and present a density estimator that is based on
two types of approximation. We employ both global and
local measuring functions, where Gaussian kernels are
used as local measuring functions. The number of the
Gaussian kernels is estimated by the minimum descrip-
tion length criterion, and the parameters are estimated by
expectation maximization and a new probability differ-
ence measure. Experimental results show the flexibility
and desirable performance of this new method.

Index Terms— Probability density estimation, Max-
imum entropy distributions, Gaussian kernel.

1. INTRODUCTION

The estimation of a probability density function (PDF)
is a common problem in a wide variety of fields ranging
from physics to statistics. Within the field of machine
learning, many estimation, detection, and classification
problems require knowledge of the data’s PDF either ex-
plicitly or implicitly, see e.g., [1]. Thus, effective char-
acterization of the density is vital to the success of these
machine learning approaches.

There are a number of density estimation methods.
The non-parametric methods, such as histogram esti-
mation, k-nearest neighbors (KNN), and kernel density
estimation (KDE) [2, 3], can provide flexible density
matching. However, these approaches are mostly com-
putationally demanding, especially when sample size is
large, and direct histogram estimation provides a discon-
tinuous density function. In addition, the performance
of non-parametric methods highly depend on the choice
of parameters, such as the number of bins, number of
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samples in a neighborhood, and the bandwidth for his-
togram, KNN, and KDE, respectively. In [4], the authors
propose KDE via diffusion (KDE-DF), which calculates
the bandwidth automatically, and show the improve-
ment in performance for a number of scenarios. Many
of the other methods assume a parametric model, such
as the generalized Gaussian distribution (GGD) [5], for
the density. These parametric methods provide a sim-
ple form for the PDF and are computationally efficient,
however the parametric form is usually very limited. For
example, the GGD limits the PDFs to these that are sym-
metric and unimodal, and controls the shape through a
single parameter. Semi-parametric methods combine the
flexibility with the relatively simple density form. Gaus-
sian mixture model (GMM) [3] has been widely used for
semi-parametric density estimation. However, GMM is
typically time consuming and since the kernel function
is limited to only a single type, the tradeoff between
flexibility and generalization ability needs to be carefully
weighted when selecting the number of mixtures and
their parameters.

In this paper, we present a density estimator with
smooth characteristics based on the maximum entropy
principle. We jointly use global and local measuring
functions to provide flexible PDFs with as simple a form
as possible. The global measuring functions provide
constraints on the statistics of the PDF, such as the mean,
variance, and higher-order statistics (HOS). However,
methods using only global measuring functions [6–8]
ignore local information of the PDF, additionally the
use of higher-order polynomials can introduce stability
issues. We use Gaussian kernels, which do not have
stability issues due to their asymptotic convergence, as
local measuring functions to provide local information.
The number of Gaussian kernels is chosen using the
information-theoretic criterion, the minimum description
length (MDL) [9]. We call the new estimator entropy
maximization with kernels (EMK). Simulation results
show the flexibility of EMK as well as its effectiveness
in approximating a range of distributions.
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2. MAXIMUM ENTROPY DISTRIBUTIONS
We seek to estimate the PDF, p(x), given observations
x(t) ∈ R, t = 1, . . . T . The seminal papers [10, 11]
introduce the principle of maximum entropy, and note
that: “the probability distribution which best represents
the current state of knowledge is the one with largest en-
tropy subject to precisely stated prior data.” The maxi-
mum entropy density, subject to known constraints, can
be written as the following optimization problem [12]:

max
p(x)

H(p(x)) = −
∫ ∞
−∞

p(x) log p(x) dx

s.t.

∫ ∞
−∞

ri(x)p(x) dx = αi, for i = 0, . . . ,M, (1)

where ri(x) and αi =
∑T
t=1 ri(xt)/T for i = 0, . . . ,M

are the measuring functions and their corresponding sam-
ple averages, respectively. From now on, we simplify
the notation for clarity if it can be inferred from context.
From (1), p is a density on support set R meeting M + 1
constraints

∫
rip = αi. We note that the first constraint

must be
∫
p = 1, equivalently r0 = 1 and α0 = 1, to

ensure that p is a valid PDF. The optimization problem in
(1) can be written as a Lagrangian function:

L(p) =−
∫
p log p+

M∑
i=0

λi

∫
(ri − αi) p, (2)

where λi, i = 0, . . . ,M , are the Lagrangian multipliers.
Through the use of functional variation, we can “differ-
entiate” (2) with respect to p. By setting ∂L(p)/∂p = 0,
we obtain the equation of maximum entropy distribution,

p(x) = exp

{
−1 +

M∑
i=0

λiri(x)

}
, (3)

where Lagrangian multipliers are chosen such that p sat-
isfies the constraints in (1). By substituting (3) into the
constraints in (1), we generate a nonlinear system ofM+
1 equations for the M + 1 Lagrange multipliers. We can
solve the problem by a Newton iteration method,

λ(n+1) =λ(n) − J−1Ep(n) {r−α} , (4)

where p(n) is the estimated PDF for the nth iteration,
and r = [r0, . . . , rM ]>, λ = [λ0, . . . , λM ]> ∈ RM+1,
and α = [α0, . . . , αM ]> denote the vector of measuring
functions, Lagrange multipliers, and sample averages, re-
spectively. The ith entry of Ep(n) {r−α} is given by

Ep(n) {ri − αi} =

∫
(ri − αi) p(n), (5)

and the (i, j)th entry of J is given by

Jij =
∂
∫

(ri − αi) p(n)

∂λj
=

∫
rirjp

(n). (6)

3. CHOICE OF MEASURING FUNCTIONS
The choice of measuring functions in (1) is critical since
they fully determine the maximum entropy distribution.
Theoretically, we can model any PDF using maximum
entropy distributions if the measuring functions are se-
lected appropriately. To this end, the authors of [7]
propose to use a dictionary of polynomials and trigono-
metric basis functions. However, the use of higher-order
polynomials can cause stability issues, and the use of a
trigonometric basis can result in noisy estimates. Also,
a large number of measuring functions is usually re-
quired to accurately model a PDF when polynomials and
trigonometric functions are used. Similar to polynomials
or trigonometric basis, functions can be approximated by
using a radial basis [13], such as Gaussian kernels.

In this paper, we jointly use global and local measur-
ing functions to provide flexible density estimation while
keeping the complexity low. As in [6], we use 1, x, x2,
x/(1 + x2) as the global measuring functions, since it
is computationally efficient to use them and they pro-
vide desirable performance for a wide range of distribu-
tions, in particular when the true PDF is not complicated.
These global measuring functions provide information
on the PDF’s overall statistics, such as the mean, vari-
ance, and certain HOS. For local measuring functions,
we use the following Gaussian kernel,

r(x) = exp

(
− (x− µ)2

2σ2

)
,

where the normalization scalar is ignored since it can be
combined with the corresponding Lagrange multiplier.
The use of Gaussian kernels provides localized informa-
tion about the PDF. We note that other kernels can also
be used as measuring functions. For example, we can
use uniform functions as the measuring functions with
the corresponding constraints on the frequency of the ob-
servations in the interval, i.e., as

∫ b
a
p = Tab/T . How-

ever, the use of uniform measuring functions will lead to
discontinuous PDF, and hence are not desirable.

4. CHOICE OF NUMBER OF CONSTRAINTS

Given that we have chosen the four global measuring
functions, the number of local measuring functions is
chosen by information-theoretic criterion, MDL [9, 14]

J (M) = TL(x|M) + εη(θM )log T , (7)
where θM = {λ0, . . . , λ3, λ4, µ4, σ4, . . . , λM , µM , σM},
L(x|M) = −

∑T
t=1 log p(x(t)|θM )/T is the normal-

ized negative log-likelihood of x given that the number
of measuring functions is M , η(θM ) = 3M − 5 indi-
cates the number of free parameters, and ε is 0.5. The
number of measuring functions is chosen to be the one
corresponding to the minimum of J (M), which jointly
simplifies the description of the data and the model.
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5. ESTIMATION OF PARAMETERS FOR
GAUSSIAN KERNELS

For each Gaussian kernel, there are two parameters, µ
and σ2, that need to be estimated. A straightforward way
to estimate these parameters is by finding the greatest de-
viation between the estimate, p, and the true PDF, p∗, and
placing a kernel there. Since the true PDF is not accessi-
ble, it is replaced by the PDF, p̄, which is estimated using
histogram. In order to match the true PDF well, espe-
cially at the parts with high probability, we propose the
following difference of probability measure,

dp =

∣∣∣∣(p− p̄)p̄ log
p̄

p

∣∣∣∣ , (8)

where the latter term is used as the weight, which empha-
sizes the parts of the distribution that have higher prob-
ability, similar to the Kullback-Leibler (KL) divergence
[12]. Then, the two parameters, µ and σ2, are given by
the mean and span of the peak with largest area of dp.

The previous approach is affected by the performance
of histogram and the robustness of the estimation. In or-
der to improve the performance, we propose to estimate
N candidate Gaussian kernels each time and estimate the
PDF corresponding to these N candidates, respectively.
Then, the parameters, µ and σ2, are chosen among the
N candidates using the maximum likelihood principle.
In addition, we replace the histogram by KDE-DF to in-
crease accuracy, andN1 of the candidates are selected by
the peaks of (8) that have the largest areas. The param-
eters for the rest of the candidates are estimated through
expectation maximization (EM). We assume that data is
generated by the mixture of a maximum entropy distri-
bution, p0 = p, and Q Gaussians, pq = N (µq, σ

2
q ), for

1 ≤ q ≤ Q. For the expectation step, the posterior prob-
ability of the nth iteration is given by

U
(n)
q,t =

τ
(n)
q p

(n)
q (x(t))∑Q

q=0 τ
(n)
q p

(n)
q (x(t))

.

For maximization step, the prior probability and param-
eters for the Gaussian mixture are given by

τ (n+1)
q =

1

T

T∑
t=1

U
(n)
q,t , for q = 0, . . . , Q,

µ(n+1)
q =

∑T
t=1 U

(n)
q,t x(t)∑T

t=1 U
(n)
q,t

, for q = 1, . . . , Q,

σ2
q
(n+1)

=

∑T
t=1 U

(n)
q,t (x(t)− µ(n+1)

q )2∑T
t=1 U

(n)
q,t

, for q = 1, . . . , Q.

We select the µq and σ2
q corresponding to the N − N1

largest τq as the parameters for the rest of the candidates.

6. TWO IMPLEMENTATIONS FOR EMK
We use the four global measuring functions given in Sec-
tion 3 and estimate the parameters for the local measur-
ing functions, the Gaussian kernels, as introduced in Sec-
tion 5. Using (5) and (6), we calculateE {r−α} and the
Jacobian matrix, J, respectively. Then, the Lagrangian
multipliers, λ, are found using the Newton iteration as in
(4). We keep adding Gaussian kernels as local measur-
ing functions until the MDL cost in (7) stops decreasing.
The parameters ε and Q are empirically chosen to be 0.1
and 3, respectively.

Here, we propose two versions of the new method,
EMK and EMK-lite (EMK-L). In EMK-L, we choose N
to be 1 and use histogram to estimate p̄ in (8). For EMK,
N and N1 are chosen to be 4 and 2, respectively, and the
parameters for these 4 candidates are estimated by PDF-
DF and EM as described in Section 5. The pseudocode
is given in Algorithm 1.

Data: x ∈ RT
Result: p(x)
r0 = 1, r1 = x, r2 = x2, and r3 = x/(1 + x2);
Estimate λ using Newton iteration in (4);
Estimate p̄;
Calculate J (3) using (7);
λopt = λ, Jopt =∞, and M = 3;
while J (M) < Jopt do

λopt = λ, Jopt = J (M), and M = M + 1;
Get current estimation, p, from (3) using λopt;
Calculate dp using (8);
Estimate N candidates, {µ, σ}, by dp and EM;
Estimate λ using (4) and choose {µM , σM} to
be the one giving min L(x) among candidates;
Calculate J (M) using (7);

end
M = M − 1 ;
The estimation, p, is given by (3) using
θ = {λopt, µ4, σ4, . . . , µM , σM} ;

Algorithm 1: EMK

By jointly using global and local measuring func-
tions, EMK provides a very simple exponential form of
the PDF, which allows for easy derivation in many appli-
cations. In addition, EMK enjoys the flexibility property
of non-parametric methods, which is shown in the next
section.

7. EXPERIMENTAL RESULTS

In this section, we study the performance of EMK by
using simulated and natural data. We show the flexibility
of EMK by comparing its performance to that of other
widely used and competitive density estimation methods
using simulations. In addition, we use natural data to
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demonstrate the effectiveness of EMK by comparing its
result with that of the given histogram visually.

Experiment 1: In order to show the flexibility of the
new method, we show the performance of EMK using a
mixture of GGD data. The PDF of GGD is given by [5]

pGGD(x |β, µ, σ) =
β

2
1
2β Γ( 1

2β )σ
exp

(
− (x− µ)2β

2σ2β

)
.

Thus, the PDF of mixture of GGD is given by

p∗(x) =

N∑
i=1

πipGGD(x |βi, µi, σi).

We choose the number of mixtures N ∈ {1, 2, 3, 4, 5}
where each choice is equally likely and weights πi ∼
U(0, 1) such that

∑N
i=1 πi = 1. The shape parameter is

generated by βi = 2a, where a ∼ U(−2, 2), i.e., pGGD
is equally likely to be super or sub-Gaussian. The mean
is generated by µn ∼ U(−6, 6). The data is normalized
to be zero mean and unit variance after generation. We
generate 25 PDFs, and perform 8 independent trials for
each PDF. Hence, the results are the average of 200 tri-
als. The performance is measured in terms of the KL
divergence [12],

∫∞
−∞ p∗ log p∗/p, between the true PDF

and the estimates. Fig. 1 demonstrates the diversity of
possible true densities that can be estimated. In Fig. 2,
we compare the performance of our method to several
of the most popular PDF estimation methods in terms of
the KL divergence and the CPU time. The bin width for
histogram (Hist), number of samples for KNN, and the
maximum number of kernels for GMM are chosen to be
3.49T−1/3, 10, and 12, respectively, where T is the sam-
ple size. We can see that EMK provides the best perfor-
mance among the methods we compare with in terms of
KL divergence showing the flexibility property of EMK.
Additionally, for CPU time, EMK is more efficient than
the methods with comparable KL divergence.
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Fig. 1. 6 randomly selected true PDFs.

Experiment 2: We show the effectiveness of EMK
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Fig. 2. Performance comparison in terms of KL diver-
gence and CPU time for mixture of GGD data.

using two 512 × 512 standard test images [15]. As we
can see from Fig. 3, EMK provides very desirable perfor-
mance in terms of matching with the histogram. In ad-
dition, EMK provides flexible density matching through
simple parametric forms using only 17—automatically
chosen—Gaussian kernels in each image.
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Fig. 3. Two test images and their estimated PDF by
EMK, red lines, and histogram, blue bars.

8. DISCUSSIONS

In this paper, we propose a new PDF estimation tech-
nique, EMK, using the principle of maximum entropy
with Gaussian kernels. By jointly using global and local
measuring functions, EMK enjoys a high level of flexi-
bility while providing a simple exponential form for the
overall PDF. We show by experiments that EMK yields
the best performance among others in terms of KL diver-
gence. Although we only consider the univariate case in
this paper, the new method can be extended to multivari-
ate case in a fairly straightforward manner.
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