
VARIATIONAL BAYES LEARNING OF MULTISCALE GRAPHICAL MODELS

Hang Yu and Justin Dauwels

School of Electrical and Electronics Engineering
Nanyang Technological University, Singapore, 639798

ABSTRACT

Multiscale (multiresolution) graphical models have gained
widespread popularity in recent years, since they enjoy rich
modeling power as well as efficient inference procedures.
Existing approaches to learning multiscale graphical mod-
els often leverage the framework of penalized likelihood,
and therefore suffer from the issue of regularization selec-
tion. In this paper, we propose a novel method to learn
multiscale graphical models from the Bayesian perspective.
More specifically, the regularization parameters are treated
as random variables that follow Gamma distributions. We
then derive an efficient variational Bayes algorithm to learn
the model, and further demonstrate the advantages of the
proposed method through numerical experiments.

Index Terms— Multiscale (multiresolution) models,
graphical models, variational Bayes, regularization selection

1. INTRODUCTION

Sparse graphical models allow efficient representation of
complex systems with few parameters by learning or impos-
ing a sparse dependency structure. Moreover, the structure
can in turn be utilized to derive highly efficient inference algo-
rithms. Thus, graphical models have found applications and
permeated the literature in a wide variety of domains, includ-
ing signal processing [1], image processing and computer
vision [2], computational biology and neuroscience [3, 4],
geophysics and earth science [5, 6], and sociology [7].

One typically constructs a sparse graphical model by dis-
covering the most important interactions between observed
variables [8], as shown in Fig. 1a. We refer to this graphical
model as a monoscale graphical model in this context, as
opposed to the multiscale models to be introduced. Sparse
monoscale graphical models, however, fail to capture the
long-range correlations between far-away sites in a spatial
domain (e.g., the dependency between nodes X1 and XP in
Fig. 1a). To overcome this limitation, multiscale graphical
models [9] introduce coarser scales to model complex de-
pendency with few parameters. A good example is to model
the sea surface temperature using a quadtree (see Fig. 1b), a
typical family of multiscale models [10]. We associate the
finest scale nodes with the original temperature measuring
stations. Under this arrangement, the root node can be re-
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Fig. 1: A graphical models with multiscale structure: (a) a
monoscale graphical model; (b) a latent tree (i.e., a quadtree);
(c) a multiscale graphical model.
garded as the average global temperature while its children
capture the deviations from this mean, and so forth at increas-
ingly finer scales. The long-range statistical dependencies
(e.g., between the Arctic Ocean and the Southern Ocean)
can be captured easily at coarser scales. Unfortunately, the
multi-scale tree model induces blocky artifacts, since some
spatially adjacent variables are widely separated in the tree
structure. A more satisfying approach is to consider inscale
structure [11], which captures short-range correlation in each
scale of different resolution as shown in Fig. 1c. Such mod-
els are equipped with strong modeling power and efficient
inference algorithms [11, 12]

Next, we give a brief review on the learning algorithms
of multiscale graphical models. A multiscale graphical model
with fixed pyramidal structure (cf. Fig. 1c) is proposed in [11].
One smoothness parameter is introduced to describe the de-
pendence between variables and is inferred via expectation
maximization. Although this model is quite useful to esti-
mate a smooth surface given noisy and incomplete observa-
tions, the fixed inscale structure seriously limits the modeling
power. Choi et al. provide a recipe for the problem of fixed
structure in [13], learning the inscale structure of all scales
via maximum entropy relaxation. Along this line, the au-
thors further develop a multiscale model with sparse inscale
conditional covariance [12], in which the inscale structure is
inferred individually for each scale, from the coarsest to the
finest. Unfortunately, instead of maximizing the likelihood,
a pseudo likelihood is maximized comprising of conditional
densities of variables in one scale conditioned on other scales.
Therefore, the results might be misleading. Another problem
with [13, 12] is the selection of regularization parameters (i.e.,
tolerance parameters in [13, 12]). Theses parameters balance
the trade-off between model fitting and the sparsity of the in-
scale structure, and hence greatly affect the numerical perfor-
mance and the model interpretation. Standard methods for
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regularization selection, such as cross validation, Akaike in-
formation criterion, and Bayesian information criterion, are
shown to overfit the data for high dimensional problems, lead-
ing to dense graphs [14]. As an alternative, stability based
methods [15, 16] can reliably infer the graphical model struc-
ture by selecting a “stable” graph from bootstrapped sample
sets. However, such methods are quite computationally de-
manding, since the learning algorithm needs to be run on each
sample set for every possible combination of regularization
parameters. Thus, the computationally complexity grows ex-
ponentially with the number of regularization parameters, and
these methods are not applicable to the case where each scale
in the multiscale graphical model is associated with different
regularization parameters [12].

To address the above mentioned problems, we present a
novel Bayesian formulation for learning multiscale graphical
models. In particular, we focus on the case where variables
in all scales are jointly Gaussian distributed. The resulting
Gaussian graphical model is directly defined by its precision
matrix (inverse covariance matrix), that is, a zero element cor-
responds to the absence of an edge in the graphical model as
well as the conditional independence between two variables.
We then impose shrinkage priors on the elements in the preci-
sion matrix corresponding to the inscale connections, and fur-
ther impose Gamma priors on the hyper parameters (i.e., regu-
larization parameters). The parameters of the resulting model
is inferred using a variational Bayes (VB) algorithm. Numer-
ical results demonstrate that the proposed approach can select
the proper amount of regularization in an automated manner,
and therefore provides a good fit with few parameters.

The paper is organized as follows. In Section 2, we briefly
introduce multiscale graphical models. We then derive the
VB algorithm in Section 3. We present experimental results
in Section 4 and offer concluding remarks in Section 5.

2. MULTISCALE GRAPHICAL MODELS

As shown in Fig. 1c, the multiscale graphical models we con-
sider in this paper have fixed tree-structured connections be-
tween different scales and sparse inscale structure at each
scale [13]. Since all the variables are jointly Gaussian dis-
tributed, such connections are characterized by the precision
matrix. We assume that the number of scales is M , and we
denote the scale with the coarsest resolution as scale 1, and
increase the scale index as the resolution increases. Note that
variables at scale m are only conditionally dependent on vari-
ables at scale m − 1 and m + 1. As such, the joint precision
matrix of all variables is a block tridiagonal matrix. In the
case of the four-scale model in Fig. 1c (M=4), the precision
matrix can be partitioned as:

K =


K[1] K[1,2]

K[2,1] K[2] K[2,3]

K[3,2] K[3] K[3,4]

K[4,3] K[4]

 , (1)

where K[m] denotes the conditional precision matrix at scale
m, and K[m,m+1] represents the tree connections between
scale m and m + 1. Since we can only observe samples of
variables at the finest (bottom) scale, the variables at coarser
scales are treated as hidden variables. As such, the joint pre-
cision matrix can be equivalently partitioned as:

K =

[
KC KCF

KFC KF

]
, (2)

where KC and KF denote the conditional precision matrices
respectively of variables xC at coarser scales and variables
xF at the finest scale. Note that KF is K[4] in the above
example. Without loss of generality, we assume the mean
vector of all variables to be zero. The resulting joint density
can be written as:

p(x|K) ∝ exp
(
− 1

2
xTKx

)
, (3)

where x = [xTC ,x
T
F ]T .

Given N observations of xF at the finest scale, our objec-
tive is to infer the joint precision matrix K. More concretely,
we aim to learn the sparse inscale conditional precision ma-
trix K[m] at each scale as well as the parameters of the tree
KT that connects different scales. To this end, we propose a
novel Bayesian formulation of the problem as follows. Since
sparse inscale conditional precision matrices are favored, we
associate the off-diagonal elements Kij of K[m] with Gaus-
sian priors with zero means and precisions λij , i.e.,

p(Kij |λij) ∝
√
λij exp

(
− 1

2
λijK

2
ij

)
, (4)

for all i > j and (i, j) ∈ KI , where KI denotes the off-
diagonal elements of the inscale conditional precision matri-
ces at all scales. As shown in our numerical experiments,
many of the precisions λij will take very large values during
the learning process, and consequently, the prior can success-
fully shrink most elements ofKI to zero, thus yielding sparse
inscale structure for all scales. We further impose conjugate
Gamma hyperprior on the precisions λij :

p(λij) = Gamma(λij ; a, b) ∝ λa−1ij exp(−bλij). (5)

The parameters a and b are set to small values (e.g., 10−100)
to obtain a flat non-informative prior. Note that∫

p(Kij |λij)p(λij)dλij =
Γ
(
a+ 1

2

)
Γ(a)
√

2πb

(
1

1 + 1
2bK

2
ij

)a+ 1
2

,

which is a t distribution. Therefore, we essentially put a
t prior on Kij . Such shrinkage prior is often used in the
Bayesian framework to promote sparsity [17, 18]. Note that
in the literature of learning graphical models [8, 12], Laplace
priors are often used since they amount to `1 norm penalties
on the precision matrix and the resulting optimization prob-
lem is convex. Although Laplace priors can also be regarded
as a scale mixture of Gaussian, the hyperprior on precisions
λij is the inverse Gamma distribution that is not conjugate to
the Gaussian distributions parameterized by precisions [19].
As a result, we employ t prior here since it is more tractable
for Bayesian inference.
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Altogether, the overall joint model can be expressed as:

p(x,K,Λ) =

N∏
n=1

p(x
(n)
F ,x

(n)
C |K)

·
∏

(i,j)∈KI ,i>j

p(Kij |λij)p(λij), (6)

where Λ is a matrix with the same size asK whose (i, j) entry
equals λij for (i, j) ∈ KI and i > j, and equals 0 otherwise.

3. VARIATIONAL BAYES INFERENCE

In this section, we devise a VB algorithm to estimate the joint
precision matrix K. Specifically, we aim to find a variational
distribution q(xC ,K,Λ) to approximate the intractable pos-
terior p(xC ,K,Λ|xF ) by minimizing the KL divergence be-
tween them as measured by KL(q|p) =

∫
q log(q/p). Here,

we apply the mean-field approximation, and therefore, the
variational distribution can be factorized as:

q(xC ,K,Λ) =

N∏
n=1

q(x
(n)
C )

P∏
i=1

δ(Ki:P,i −K∗i:P,i)

·
∏

(i,j)∈KI ,i>j

q(λij), (7)

where δ(Ki:P,i − K∗i:P,i) is a delta function which equals 1
when Ki:P,i = K∗i:P,i and 0 otherwise, Ki:P,i denotes the
ith to P th elements in the ith column of K, and P is the
dimension of K. We follow [19, 20] to use delta functions as
the variational distributions of elements in K for the sake of
convenience. Furthermore, as the algorithm proceeds, many
of the precisions λij will become very large, and then delta
functions can well approximate the true posterior distribution.

The VB update rules can then be derived as follows. For
hidden variables xC ,

q(x
(n)
C ) ∝ exp

{
〈log p(x

(n)
F ,x

(n)
C |K)〉δ(K−K∗)

}
(8)

= p(xC |xF ;K∗) (9)

= N
(
x
(n)
C ;µ

(n)
C|F ,ΣC|F

)
, (10)

where the conditional mean µ(n)
C|F = (K∗C)−1K∗CFx

(n)
F and

the conditional covariance ΣC|F = (K∗C)−1. For preci-
sion matrix K, we generate point estimates of Ki:P,i for
i = 1, · · · , P sequentially. Equating the corresponding gra-
dient to zero yields:
K∗i+1:P,i =−

{
NSii[(K

∗
¬i,¬i)

−1]i:P−1,i:P−1

+ diag(〈Λi+1:P,i〉)
}−1{

NSi+1:P,i

+NSiiK
∗
i,1:i−1[(K∗¬i,¬i)

−1]1:i−1,i:P−1
}
, (11)

K∗ii =S−1ii + (K∗¬i,i)
T (K∗¬i,¬i)

−1K∗¬i,i. (12)
In the above expression, diag(a) denotes a matrix with the

Table 1: VB learning of multiscale graphical models.

Compute empirical covariance of the finest scale SF . Initialize K∗ as a
normalized Laplacian matrix of a graph with full inscale structures.

1. Compute ΣC|F = (K∗C)−1.

2. Compute the matrix S as given in Eq. (13).

3. Compute Σ = (K∗)−1. For i = 1, · · · , P , update Ki:P,i sequen-
tially as follows:

(a) Compute (K∗¬i,¬i)
−1 = Σ¬i,¬i − Σ¬i,iΣi,¬i/Σii.

(b) Update K∗i+1:P,i using Eq. (11), and hence K∗i,i+1:P =

(K∗i+1:P,i)
T .

(c) Update Kii using Eq. (12).

(d) Update the covariance Σ corresponding to the new K∗ using
Schur complement as follows:

Σii = Sii,

Σ¬i,i = −(K∗¬i,¬i)
−1K∗¬i,iΣii, Σi,¬i = ΣT¬i,i,

Σ¬i,¬i = (K∗¬i,¬i)
−1 + Σ¬i,iΣi,¬i/Σii.

4. Compute K∗ in the current iteration by damping:

K∗(κ) = ρK∗(κ−1) + (1 − ρ)K∗.

5. Update q(λij) following (16).

vector a on the diagonal, 〈Λi+1:P,i〉 denotes the expectation
of q(Λi+1:P,i), and ¬i represents all the indices except i. The
matrix S can be partitioned in the same way as K in (1), and
the submatrices of S can be expressed as in Eq. (13), where
SF is the empirical covariance of variables in the finest scale.
Note that we only need to update the elements in K corre-
sponding to the inscale and interscale connections; other ele-
ments are set to zero all the time. Furthermore, we can easily
prove the positive definiteness of K∗ in each iteration follow-
ing the proof in [19]. In addition, we emphasize that there is
no guarantee that the KL divergence is decreased every time
we update K∗, due to the non-conjugacy between p(x|K)
and p(Kij |λij) [21]. However, as shown in [21], such prob-
lem can be fixed by damping. As a result, we employ the
damping method with a damping factor ρ = 0.9, and find
that it successfully ameliorates the monotonicity problem of
KL divergence in our experiments. More precisely, given K∗

resulting from (11) and (12) as well as the precision matrix
in the previous iteration K∗(κ−1), the precision matrix in the
current iteration can be computed as:

K∗(κ) = ρK∗(κ−1) + (1− ρ)K∗ (14)
Finally, for λij ∈ KI ,
q(λij) ∝ p(λij) exp

{
〈log p(Kij |λij)〉δ(Kij−K∗

ij)

}
(15)

= Gamma
(
λij ; a+

1

2
, b+ (K∗ij)

2
)
. (16)

The proposed algorithm are summarized in Table 1.

S[m1,m2] =


[ΣC|F ][m1,m2] + [ΣC|F ][m1,M−1]K

∗
[M−1,M ]SFK

∗
[M,M−1][ΣC|F ][M−1,m2], m1,m2 < M

−[ΣC|F ][m1,M−1]K
∗
[M−1,M ]SF , m1 < M,m2 = M

SF , m1 = m2 = M

, (13)

1893



Table 2: Modeling fractional Brownian motion data.

Criteria Empirical MonoGGM TreeGGM CO-MultiGGM VB-MultiGGM
KL div 0 1.1480×103 89.0431 13.5270 3.6472

Prm No. 32896 23064 681 1733 1402
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Fig. 2: Fractional Brownian motion data modeling: (a) empir-
ical covariance and covariance resulting from (b) MonoGGM,
(c) TreeGGM and (d) VB-MultiGGM.

4. NUMERICAL RESULTS

In this section, we benchmark the proposed method (re-
ferred to as VB-MultiGGM) with a model parameterized by
the empirical covariance, a monoscale Gaussian graphical
model (MonoGGM), a multiscale tree Gaussian graphical
model (TreeGGM), and a multiscale Gaussian graphical
model whose inscale structure is inferred by `1 norm pe-
nalized convex optimization (CO-MultiGGM). In particular,
we follow [12] to learn the inscale structure at each scale
individually, from the coarsest to the finest [12]. Moreover,
we also utilize the method in [12] to determine the proper
amount of regularization. Specifically, different regulariza-
tion parameters λE and λN are used respectively to penalize
the off-diagonal and diagonal elements in the inscale matri-
ces. For coarser scales, λE = ξ/4 and λN = 2λE , where ξ
is the largest value of the off-diagonal elements in the empir-
ical inscale conditional precision matrix. For the finest scale,
λE = ξ/2, and we choose λN such that the KL divergence
between the empirical and the estimated covariance at the
finest scale is minimized. It is shown empirically in [12] that
this regularization selection method works well. We compare
the four models by means of KL divergence (KL div) and
number of parameters (Prm No.).

4.1. Fractional Brownian Motion

We consider fractional Brownian motion in this section,
which is known to possess long-range dependence across
time [12]. Concretely, the covariance matrix is given by
Σ(t1, t2) = 0.5(|t1|2H + |t2|2H − |t1 − t2|2H), with Hurst

Table 3: Modeling data with polynomially decaying covari-
ance.

Criteria Empirical MonoGGM TreeGGM CO-MultiGGM VB-MultiGGM
KL div 0 13.2503 30.0939 11.2937 3.8719

Prm No. 32896 18474 681 1391 1377

parameter H = 0.3 for t1, t2 ∈ {1/256, 2/256, · · · , 1}.
We next generate 6000 samples from the Gaussian distribu-
tion parameterized by this covariance matrix, and learn the
five models given the data. The results are summarized in
Table 2 and Fig. 2. Obviously, the proposed method outper-
forms other approaches; it yields a small KL divergence with
few parameters. The CO-MultiGGM performs the second
best. However, it introduces more parameters, whereas the
resulting KL divergence is larger. By comparing these two ap-
proaches, we can find that inferring regularization parameters
from data in the Bayesian framework helps not only improve
the modeling fitting but reduce the number of parameters as
well. On the other hand, as shown in Fig. 2b and Fig. 2c, the
MonoGGM fails to capture the long-range dependence be-
tween variables, while the TreeGGM mistakenly induces the
blocky artifacts. In contrast, by learning the inscale structure
in an automated manner, the proposed method (cf. Fig. 2d)
can both describe the long-range correlation and remove the
blocky artifacts. Finally, we can see that the empirical covari-
ance model fits the data the best, but the resulting number of
parameters is much larger than that of the rest models. Such
model is prohibitive for large-scale problems.

4.2. Polynomially Decaying Covariance

We now focus on a set of 256 Gaussian distributed variables
allocated spatially on a 16×16 lattice. The corresponding co-
variance matrix is defined as Σ(s1, s2) =

√
d(s1, s2), where

d(s1, s2) is the spatial distance between node s1 and s2. Poly-
nomially decaying covariance is typically found in models
with long-range correlations [13], in contrast with exponen-
tially decaying covariance associated with short-range corre-
lation. We draw 6000 samples from this model and further
learn the five models based on the samples. We list the re-
sults in Table 3. Once again, the proposed VB-MultiGGM
achieves the best performance, indicating that the VB algo-
rithm can automatically learn the sparse inscale structure so
that the resulting multiscale graphical model can well capture
the complex interactions between variables with few parame-
ters.

5. CONCLUSION

In this paper, we construct multiscale Gaussian graphical
models from a Bayesian perspective and further develop a
novel VB algorithm to learn the model. The results show that
the proposed method can reliably infer the inscale structure
in an automated manner without the need for manually tuning
any regularization parameters.
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