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ABSTRACT

Assessment and quantification of behavior is an important re-
search objective in the recently developed field of behavioral
signal processing. This paper focuses on the estimation of
behavior from noisy human assessment. It aims to address
the redundancy of behavioral descriptors for couples therapy
by introducing a lower-dimensional representation of the be-
havioral space. We present an improved method for estimat-
ing the ground truth of behavioral ratings from assessment by
multiple experts or annotators. The results show improved es-
timation performance using the proposed method and provide
an insightful analysis of reconstruction error and decorrela-
tion of annotator bias in the reduced behavioral space.

Index Terms— Behavioral Signal Processing (BSP), be-
havioral informatics, bias, noise, annotator

1. INTRODUCTION
Understanding human behavior is one of the central themes
of modern psychological and sociological research and prac-
tice. Human expression and perception of behavior highly
influence human interactions and relationships on a daily ba-
sis. Given the importance and the widespread nature of the
problem domain, computational modeling of human behavior
is becoming an area of increasing activity bringing together
the fields of psychology and social sciences with data analyt-
ics [1, 2]. For instance, [3, 4] have presented work relating to
understanding couple behaviors, [5] in characterizing autism,
and [6, 7] in analysis of Motivational Interviewing based psy-
chotherapy.

Psychologists often use a range of behavioral rating sys-
tems to quantify different abstract attributes of human behav-
ior, typically along rating scales (e.g., range 1-7) using con-
structs such as empathy, blame, humor, anxiety, and satisfac-
tion [8, 9]. These behavioral descriptors are often constructed
with the application domain needs in mind, but not necessar-
ily with in-depth understanding of the human limitations in
disambiguating behavioral codes from audio-visual observa-
tion. Furthermore, behavioral descriptions for a given appli-
cation often are abstract and subjective and hence tend to have
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varying amounts of descriptive redundancy leading to corre-
lation between the behavioral codes.

The codes are estimated using observed human behav-
ior data (e.g., audio, video, text) and fundamental questions
remain as to the information capacity of such data with re-
spect to behavior codes [1]. Moreover, the inter-relation be-
tween the multiple manually-specified codes by experts for a
given application is not quantitatively established. To address
these questions, we can explore the possibility of conveying
as much information on the behavior as possible using fewer
codes through a transform of the original codes.

In conventional behavioral analysis, multiple human an-
notators are employed to derive the behavioral codes from
observed data under the guidelines of a specified coding sys-
tem. The heterogeneity and subjectivity in perception of be-
havior is reflected in the variability of the derived codes. To
fuse the evaluations by multiple annotators and obtain the (la-
tent) ground truth or estimates reflecting the subject’s true
behavior is still an open problem. While there has been
significant research in fusion of discrete categorical labels
(nominal data), such as classifying emotion types[10] or la-
beling images[11, 12], in most applications multiple evalu-
ations of ratings (ordinal data) on behavioral codes or emo-
tional primitives are simply averaged to get the ‘true’ esti-
mate. In [13, 14], a more powerful method called Evaluator
Weighted Estimator (EWE) was proposed which assigns dif-
ferent weights to annotators based on their reliability. How-
ever, it has the limitation of not quantifying the bias and tends
to fail when all annotators have similar bias trends. This moti-
vates us to estimate the statistical parameters of the annotator-
bias to get obtain better estimates of ‘true’ codes.

In the following sections, we analyze different aspects of
representing the codes in a lower dimensional space without
significant loss of accuracy. Moreover, we propose a novel
and iterative method to estimate ‘true’ codes from the noisy
codes from multiple annotators.

2. HYPOTHESES AND MODEL DESCRIPTION
2.1. Hypotheses
The work presented in this paper is driven by the following
hypotheses about the estimation and reduced representation
of behavioral codes and the biases associated with the codes.
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Fig. 1. Human annotation is noisy and subjective. Under-
standing this process can lead to better estimation of real be-
havioral states and conditions.

• H1: We can get better estimates of the ‘true’ codes from
the noisy behavioral ratings provided by the annotators
by identifying the noise-model (akin to bias and relia-
bility) of each annotator.

• H2: Behavioral codes can be represented using reduced
number of variables using a transformation of the orig-
inal codes to a lower-dimensional space. Since human
annotation is noisy, reducing the dimensionality of the
behavioral space can potentially reduce the error intro-
duced by the human-annotation process.

• H3: In addition to the behavioral codes, the noise intro-
duced by the annotators in the higher dimensional space
is also decorrelated in the lower dimensional space if
the same transform is used as in H2.

2.2. Model Description

Fig. 1 depicts the human annotation process, which is inher-
ently noisy. Behavioral scales are made by humans for use
by humans, and these scales represent average human opin-
ion, however each specific individual is different; someone
may have a more negative attitude and can focus on negative
aspects of the interaction and provide more negative ratings
while a more positive person can have a positive bias. To re-
duce error in annotated behaviors multiple annotators are of-
ten asked to rate each therapy session. Further for each study
multiple behaviors are of interest.

Validating H1: We represent this process in Fig.2 on
the right: a noisy multiple-input multiple-output framework
where the assessment of every behavioral dimension can be
treated as a signal transmitted through a noisy channel. Each
output block represents the assessment of ‘true’ codes x by an
annotator k producing his own assessment y(k) that incorpo-
rates his own biases n(k).

Validating H2: Further, behavioral annotation manuals
include a range of behaviors relevant to the study-domain,
that are often highly inter-dependent. For instance the cou-
ples therapy annotation manuals [15, 16] define behavior
codes such as “negative,” “positive,” “blame,” that are very
related. We want to investigate the possibility that a lower-
dimensional behavioral codeset exists that can minimize an-
notation cost and reduce the noise-floor of the annotation pro-
cess. This process is shown in the left block of Fig. 2.
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Fig. 2. Model of transmission of behavioral codes analogous
to a multi-input multi-output system

Validating H3: After finding the transformation T we can
employ that to transform the individual annotator noise mod-
els and investigate how such transformation applies to the in-
dividual annotators’ internal model.

3. METHODOLOGY
Let us define:
• ‘true’ codes in N-dimensions as defined by annotation

manual, x = [x1, x2,...,xN ]
T

• estimate of ‘true’ codes in reduced M-dimensions, z=
[z1, z2,...,zM]T

• bias of k-th annotator, n(k) = [n(k)1 ,n(k)2 , ...,n(k)N ]T,
• ‘noisy’ codes for each session y(k) = [y(k)1 ,y(k)2 , ...,

(k)
N ]T,

where the annotator is denoted by k = 1,2,3, ...,C,
where C is the number of annotators for a specific ses-
sion.

Noise model. We model the biases as additive Gaussian
noise that can have non-zero mean. For example, an annotator
having positive mean of bias for ‘satisfaction’ indicates that
on an average he or she is more likely to rate ‘satisfaction’
with a value higher than the actual ones. Moreover, the un-
certainty of the bias for every annotator for every code can be
modeled as the variance of the bias variable associated with
that annotator for that code. According to this model,

y(k) = x+n(k) (1)

Now based on our Gaussian assumption of bias variables,

n(k)i ∼N (µ
(k)
i , (σ

(k)
i )

2
) (2)

where the code index is denoted by i = 1,2,3, ...,N and the
annotator by k = 1,2,3, ...,CT , where CT is the total number
of annotators for the entire dataset.

Mean bias. Behavioral manuals represent the human col-
lective experience: for instance a neutral emotion is what a
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very large number of people would consider a neutral emo-
tion. As such, had we obtained a very large number of anno-
tations, we could assume that the average bias would be zero.
In this case, we will loosen that assumption to employ all of
the annotators of the entire dataset for all codes, i.e.,

1
N

CT

∑
j=1

µ
( j)
i ≈ E(µi) = 0 ∀i ∈ {1,2,3, ...,N} (3)

Transformation of ‘true’ codes. The transformation T from
z to x (from a lower dimensional efficient space to a higher
dimensional, over-generated space) is shown in Fig. 2 (left).
For ease and tractability in this work we approximate T by a
linear and time-invariant process. So we can represent T as a
transformation matrix T of size N×M. Therefore,

x = T(z) = Tz (4)

Since z, x are unknown, we first estimate x from y(k) and
then z and T from x. The optimal M (size of z) is also not
known and as such we are providing later an analysis of the
information loss through this lower-dimensional representa-
tion.
3.1. Estimation of ‘True’ Codes from Noisy Codes
In this section, we discuss how we estimate the ‘true’ codes
from the codes given by various annotators. Our technique
is a modification of the Expectation-Maximization (EM) al-
gorithm where in each step we find the noise model of each
annotator, then based on this noise model we estimate the
ground truth and iterate. We initialize ground truth as the av-
erage of y(k)’s. We implicitly utilize (3) as a constraint in our
method, which follows:

• Step 1: For every session, initialize x(0) = 1
C

C
∑

k=1
y(k)

• Step 2: For iteration (t + 1), use the previously esti-
mated value of x(t) to get a realization of n(k)(t + 1)
for every annotator k as follows:

n(k)(t +1) = y(k)−x(t) ∀k (5)
• Step 3: Estimate the noise parameters for every anno-

tator using different sessions:
(i) Find the sample mean (Maximum Likelihood es-

timate) of biases for each annotator (∀k) using all
of Lk instances annotated by him and re-estimate
to satisfy collective zero-mean assumption in (3):

̂
µ(k)(t +1) =

1
Lk

Lk

∑
l=1

n(k),(l)(t +1) (6)

µ
(k)(t +1) = ̂

µ(k)(t +1)− 1
CT

CT

∑
j=1

̂
µ(j)(t +1)

(ii) Compute the sample variance (Maximum Likeli-
hood estimate) of biases ∀i,k:

[σ
(k)
i (t+1)]2 =

1
Lk−1

Lk

∑
l=1

[n(k),(l)i (t+1)−µ
(k)
i (t+1)]2

(7)
In (6) and (7) the l in n(k),(l)i indicates realizations of the

same random vector n(k) in different sessions.
• Step 4: Get new estimates for true codes:

x(t +1) =
1
C

C

∑
k=1

(y(k)−µ
(k)(t +1)) ∀k (8)

• Step 5: Go to step 2 unless convergence criterion is met.
Due to space limitations the derivation and convergence
analysis are omitted.

3.2. Representation of Codes in Lower-dimensional
Space
We used the well-known Principal Component Analy-
sis (PCA) technique to project the estimated ‘true’ codes x
onto lower dimensional space.

1. PCA computes a matrix H such that it transforms x into
w as w = Hx.

2. Keep the first M (also, most informative) elements of
w to get the z and discard the remaining (N−M) (least
informative) elements.

Alternatively, we could use a matrix H̃ by keeping only
first M rows of H and obtain z from x directly as z = H̃x. The
pseudoinverse of H̃ is basically the transformation matrix T
introduced in (4), T = (H̃T H̃)

−1 H̃T.
3.3. Transformation of Annotator Noise Model
Having an estimate of the transformation as in Sec. 3.2 from
the original behavioral coding space x described in Sec. 3.1
we can attempt to estimate whether this transformation is also
applicable to the noise introduced by the annotators. For ev-
ery n(k) ∼N (µ(k), K(k)

n ) we obtain µ(k) and the covariance
matrix K(k)

n . Then we project n(k) using H̃ to obtain the noise
model of the annotators in the reduced-dimensionality behav-
ioral space in terms of their resulting bias mean and covari-
ance matrix.

4. DATASET USED AND EXPERIMENTAL SETUP
For our experiments we used the Couples Therapy corpus
ratings [17] defined by the Couples Interaction Rating Sys-
tem (CIRS) [16, 15]. It has 13 different codes and every code
is rated on a scale from 1 to 9. The database contains a total
of 5367 annotations that correspond to 1538 unique sessions
from 168 unique couples rated by 17 trained annotators. Rat-
ings include behavioral assessment of husband, wife, or both
along 13 behavioral dimensions. Each session is rated by a
subset of the annotators ranging from 2 to 9.

5. RESULTS
5.1. Effect on Inter-annotator Agreement
We compare our method with two other commonly used
approaches: (i) estimating x as y(k) (average of annota-
tor ratings) (ii) the Evaluator Weighted Estimator (EWE)
method [13] which takes a weighted average of annotator rat-
ings based on their reliability.

Due to lack of the real true codes for comparison, we use
Krippendorff’s α [18] for inter-annotator agreement, where
higher value of α means more agreement. We replace the rat-
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Table 1. Inter-annotator agreement using Krippendorffs α: (1) Original annotator; (2) Replacing one annotator with our
method’s estimate of the ground truth, or (3) with mean opinion, or (4) with the EWE estimate of the true code.

Data used
(1) Human

coding
(2) Annotator→proposed

code estimate
(3) Annotator→mean

estimate
(4) Annotator→EWE

code estimate

mean α 0.7562 0.9007 0.8661 0.8434
std. dev. 0.1116 0.1087 0.0956 0.1161
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Fig. 3. Normalized Reconstruction Error for different dimen-
sions (M) of z and average noise due to annotator biases

ings of one annotator by the estimated ‘true’ codes and repeat
this for all annotators one at time, and report the mean α and
the standard deviation for each method. We also compute α

for the original human ratis without any estimation. As we
see in Table 1, our method performs the best, validating H1.

5.2. Analysis of Lower Dimensional Representation
Given N = 13 in our dataset, we have experimented with dif-
ferent values of M. Fig. 3 shows how the normalized recon-
struction error (the ratio of the l2-norm of errors to that of
the original codes) varies with M when we reconstruct the
higher dimensional codes from z. We also show the normal-
ized ‘noise-floor’ (the ratio of the l2-norm of mean biases to
that of the original codes) in higher dimensional space which
indicates the level of uncertainty in y(k) with respect to x. So,
having a reconstruction error less than the ‘noise-floor’ is not
very meaningful. This justifies H2, the need for consideration
of a lower dimensional representation.

5.3. Annotator bias in Reduced Space
To validate our H3, we experimentally show that bias vari-
ables also get decorrelated across dimensions in the projected
space. We define a Bias Decorrelation Factor(BDF) as fol-
lows:

BDF =
avg. cross-corr. co-eff. of biases in x-space
avg. cross-corr. co-eff. of biases in z-space

=
ρx

ij

ρz
ij

where i 6= j and we consider absolute values of correlation co-
efficients while taking the average. A high value of BDF indi-
cates a high degree of decorrelation. As we can see in Fig. 4,
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Fig. 4. Variation of Bias Decorrelation Factor of with differ-
ent dimensions (M) of z for the noise model biases

we get BDF> 1 for all values which signifies the decorrela-
tion of the biases across dimensions in the projected space.
Moreover, we get higher values of BDF for M < 13, specif-
ically M = 11 gives the most decorrelated representation of
biases.

6. CONCLUSIONS

We presented a noisy signal-based framework of behavioral
codes which we can utilize to obtain reliable estimates of ‘true
codes’ or ground truth using the evaluations of multiple an-
notators. The proposed method has been shown to increase
the inter-annotator agreement compared to other approaches
as it utilizes the statistics of the biases of all annotators. We
also analyzed the relationship between the reconstruction er-
ror and different reduced-size representations and compared it
to the noise level arising from the annotator biases. Moreover
we observe that annotator biases across different codes are
decorrelated when represented in lower dimensional space.
Thus we conclude that lower dimensional representations can
be useful for minimizing the annotation cost and diluting the
impact of annotator biases while retaining most of the infor-
mation of the original codes. Although not used in this work
we intend to analyze reliability information of the various an-
notators as denoted by the variance (7) in future work. We
also intend to employ datasets of higher behavioral dimen-
sionality to show the need of joint annotation-manual defini-
tion, annotation code redundancy evaluation, and annotator
reliability analysis.
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