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ABSTRACT

This paper presents a single-channel source separation method that
extends the ideas of Nonnegative Matrix Factorization (NMF). We
interpret the approach of audio demixing via NMF as a cascade of a
pooled analysis operator, given for example by the magnitude spec-
trogram, and a synthesis operators given by the matrix decomposi-
tion. Instead of imposing the temporal consistency of the decom-
position through sophisticated structured penalties in the synthesis
stage, we propose to change the analysis operator for a deep scat-
tering representation, where signals are represented at several time
resolutions. This new signal representation is invariant to smooth
changes in the signal, consistent with its temporal dynamics. We
evaluate the proposed approach in a speech separation task obtain-
ing promising results.

Index Terms— source separation, scattering, non-negative ma-
trix factorization.

1. INTRODUCTION

The problem of source separation has been widely studied in the
speech processing community [1, 2]. It becomes particularly chal-
lenging when only one microphone is used, or in the presence of
non-stationary background noise, which is a very common situation
in many applications encountered, e.g., in telephony. We approach
this problem as a monaural source separation method by modeling
the speech at an appropriate temporal resolution.

The decomposition of time-frequency representations, such as
the power or magnitude spectrogram in terms of elementary atoms
of a dictionary, has become a popular tool in audio processing. Non-
negative matrix factorization (NMF) [3], have been widely adopted
in various audio processing tasks, including in particular source sep-
aration, see [4] for a recent review. There are many works that follow
this line in speech separation [5, 6] and enhancement [7, 8].

In NMF, signals that can be well approximated with the learned
dictionary are likely to resemble the training data on a frame by
frame manner. They might, however, not be temporally consistent
at larger temporal scales. Standard NMF approaches treat differ-
ent time-frames independently, ignoring the temporal dynamics of
the signals. To capture temporal dependencies, works have consider
convolutional extension of NMF [9], where the atoms correspond to
patches comprised of several time-frequency frames. To avoid the
increase in dimensionality, many works have proposed regularized
extensions of NMF to promote learned structure in the codes. Ex-
amples of these approaches are, temporal smoothness of the activa-
tion coefficients [10], including co-occurrence statistics of the basis
functions [11], and learned temporal dynamics [12, 13, 14].

NMF-based source separation methods can be thought as the
concatenation of two operators. First, the signal is represented in a

feature space given by a non-linear analysis operator, typically de-
fined as the magnitude of a time-frequency representation such as the
Short-Time Fourier Transform (STFT). Then a synthesis operator,
given by the dictionary learning stage, is applied to produce an un-
mixing in the feature space. The separation is obtained by inverting
these representations. Performing the separation in the non-linear
representation is key to the success of the algorithm. The magni-
tude STFT is in general sparse (simplifying the separation process)
and invariant to variations in the phase, thus relieving the NMF from
learning this irrelevant variability. This comes at the expense of in-
verting the unmixed estimates in the feature space, normally known
as the phase recovery problem [15]. In the case of standard NMF,
this is typically done via Wiener filtering.

In this work, rather than optimizing a coding scheme with im-
proved temporal coherence, we concentrate in the extracton of dis-
criminative and stable features. For that purpose, it is crucial to in-
crease the temporal context of the representation, reducing uninfor-
mative variability while preserving distinctive speech characteristics.
Increasing the temporal scale of STFT or MEL representations re-
sults in loss of important discriminative information [16]. In order
to overcome the limitations of these shallow representations, scatter-
ing transforms [16, 17] cascade several stages of complex wavelet
decompositions and complex modulus, yielding discriminative rep-
resentations with the ability to capture temporal structures at larger
scales, e.g. smooth changes in pitch and envelope. Scattering trans-
forms achieve state-of-the-art results on auditory texture discrimina-
tion, and music genre recognition [16, 18]. Recently they have been
considered in the setting of blind source separation in [19], but here
we concentrate in the supervised (and semi-supervised) framework.

In source separation, it is desirable to have a representation with
better spatio-temporal resolution than standard scattering features.
In this work, we propose a scattering pyramid representation, con-
sisting in a collection of scattering features at different temporal res-
olutions. With this representation, singals are modeled using a multi-
level set of dictionaries each acting at a given temporal resolution. In
this way, short-term temporal dynamics of the signal can be captured
by the long-context model, capitalizing on the stability properties of
scattering coefficients [17].

Our claim is that an important part of the consistency that is
imposed via structured NMF, can be eliminated with a better signal
representation. In this new setting one can learn the temporal dy-
namics with a very simple NMF encoding. However, the problem
that becomes more difficult is that of inverting the non-linear repre-
sentation. Recent studies in textured sound synthesis from scattering
moments have solved this problem successfully using gradient de-
scent algorithms [20]. Sparse synthesis models with coherent dictio-
naries are known to be highly unstable representations [21]. Thus,
training them to satisfy slowness and temporal consistency can be
challenging. In contrast, analysis operators are stable by construc-

1876978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



tion.
Recent works have started to use discriminative training in the

context of source separation. Methods based on NMF [22, 23] and
recurrent neural networks [24, 25]. These initial results show the
benefits of this setting. The proposed method could also be framed
into the discriminative setting.

Section 2 reviews non-negative matrix factorization, while Sec-
tion 3 describes scattering representations for speech. Our source
separation algorithm is described in Section 4 and numerical exper-
iments on TIMIT and GRID datasets are reported in Section 5.

2. NMF SPEECH SOURCE SEPARATION

We consider the setting in which we are given a temporal signal x(t)
that is the sum of two speech signals xi(t), i = 1, 2:

x(t) = x1(t) + x2(t) , (1)

and we aim at finding estimates x̂i(t). NMF-based source separation
techniques typically operate on a non-negative time-frequency rep-
resentation of x(t), such as the spectrogram or the power spectrum,
that we denote as Φ(x) ∈ Rm×n, comprising m frequency bins and
n temporal frames. NMF attempts to find the non-negative activa-
tions Zi ∈ Rq×n, i = 1, 2 best representing the different speech
components in two dictionaries Di ∈ Rm×q . This task is achieved
through the solution of

min
Zi≥0

D(Φ(x)|
∑
i=1,2

DiZi) + λ
∑
i=1,2

R(Zi) . (2)

The first term in the optimization objective measures the dissimi-
larity between the input data and the estimated channels. Frequent
choices of µ are the squared Euclidean distance, the Kullback-
Leibler divergence, and the Itakura-Saito divergence, for which
there exist standard optimization algorithms [26]. In this work we
concentrate on a reweighted Euclidean distance, but any other option
could be used instead. The second term in the minimization objec-
tive is included to promote some desired structure of the activations.
Once the optimal activations are solved for, the spectral envelopes
of the speech and the noise are estimated as DiZi. Since these
estimated speech spectrum envelope contain no phase information,
they are used to build soft masks to filter the mixture signal [27].

3. SCATTERING TRANSFORM

Discriminative features having longer temporal context can be con-
structed with the scattering transform [16, 17]. While these features
have shown excellent performance in various classification tasks, in
the context of source separation we require a representation that not
only captures long-range temporal structures, but also preserves as
much discriminability as possible. For this reason, we construct a
multi-level representation consisting of a pyramid of scattering coef-
ficients with different temporal resolutions at each level. This section
reviews its definition and main properties when applied to speech
signals.

3.1. Wavelet Filter Bank

A wavelet ψ(t) is a band-pass filter with good frequency and spa-
tial localization. We consider a complex wavelet with a quadrature
phase, whose Fourier transform satisfies Fψ(ω) ≈ 0 for ω < 0. We
assume that the center frequency of Fψ is 1 and that its bandwidth
is of the order of Q−1. Wavelet filters centered at the frequencies

λ = 2j/Q are computed by dilating ψ: ψλ(t) = λψ(λ t), and hence
Fψλ(ω) = ψ̂(λ−1ω). We denote by Λ the index set of λ = 2j/Q

over the signal frequency support, with j ≤ J , and we impose that
these filters fully cover the positive frequencies:

∀ω ≥ 0 , 1− ε ≤ |Fφ(ω)|2 +
1

2

∑
λ∈Λ

|Fψλ(ω)|2 ≤ 1 , (3)

for some ε < 1, where φ(t) is the lowpass filter carrying the low
frequency information at scales larger than 2J . The resulting filter
bank has a constant number Q of bands per octave. The wavelet
transform of a signal x(t) is

Wx = {x ∗ φ(t) , x ∗ ψλ(t)}λ∈Λ .

Thanks to (3), one can verify that

‖x‖2(1− ε) ≤ ‖x ∗ φ‖2 +
∑
λ∈Λ

‖x ∗ ψλ‖2 ≤ ‖x‖2 . (4)

3.2. Joint Time-Frequency Pyramid Scattering

Scattering coefficients provide a nonlinear representation computed
by iterating over wavelet transforms and complex modulus nonlin-
earities. We start by removing the complex phase of wavelet coef-
ficients in W 1x with a complex modulus nonlinearity. We arrange
these first layer coefficients as nodes in the first level of the tree,

|W 1|x = {x1
i }i=1...1+|Λ| = {x∗φ1(∆1n) , |x∗ψ1,λ1(∆1n)|}λ∈Λ .

where ∆1 is the critical sampling rate of the highest frequency
wavelet sub-band (the reciprocal of the largest bandwidth present in
the filter bank) and ψ1 has bandwidth Q−1

1 . These first layer coef-
ficients give localized information both in time and frequency, with
a trade-off dictated by the Q factor, Q1, that adjusts the frequency
resolution of these wavelets. For speech a typical choice is around
Q1 = 32.

In order to increase the robustness of the representation, we
transform each of the down sampled signals from this first layer with
a new wavelet filter bank and take the complex modulus of the oscil-
latory component. In order to sample each channel using the same
temporal resolution, this time we apply the lowpass anti-aliasing fil-
ter to the demodulated channels:

|W 2|x = {x1
i ∗φ2(∆2n) , |x1

i ∗ψ2,λ2 |∗φ2(∆2n)|}i=1...|W1| , (5)

where ∆2 is this time the critical sampling rate of the averaging fil-
ter φ2. The multiscale variations of each envelope specify the am-
plitude modulations of x(t) [16] and thus have the capacity to detect
rhythmic structures appearing at different frequency bands. The Q-
factor Q2 of the second family of wavelets ψ2,λ2 controls the time-
frequency resolution of the transform. Since the envelopes |x ∗ψλ1 |
have bandwidth ∼ 2−jQ−1

1 , one typically chooses dyadic Q2 = 1
second order wavelets. Scattering coefficients have a negligible am-
plitude for λ2 > λ1 because |x ∗ ψλ1 | is a regular envelop whose
frequency support is below λ2 [17]. Scattering coefficients are thus
computed only for λ2 < λ1.

Scattering transforms have been extended along the frequency
variables to capture the joint time-frequency variability of spectral
envelopes and therefore provide representations locally stable to
pitch variations [16]. We denote γ = log2 λ1, and consider the
scalogram as a two-dimensional function of γ and t:

F (γ, t) = |x ∗ ψ2γ (t)| .
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In this work, we consider a second layer scattering with a sepa-
rable wavelet transform F ∗ ψγ2,λ2

(γ, t) , with

ψγ2,λ2
(γ, t) = ψ̃γ2(γ)ψ2,λ2(t) , ψ0,λ2

(γ, t) = φ̃(γ)ψ2,λ2(t)

ψγ2,0(γ, t) = ψ̃γ2(γ)φ2(t) , φ(γ, t) = φ̃(γ)φ2(t)

By replacing ψ and φ in (5) by ψ and φ respectively, we obtain
the joint scattering pyramid transform. In this implementation,
we choose temporal wavelets ψ(t) to be dyadic complex Morlet
wavelets, and ψ̃ to be dyadic real Haar wavelets to preserve good
frequency localization, with no frequency downsampling.

We can reapply the same operator as many times k as desired
until reaching a temporal context T = ∆k, but in this implementa-
tion we demonstrate the method with k ≤ 2. If the wavelet filters are
chosen such that they define a non-expansive mapping [17], it results
that every layer defines a metric which is increasingly contracting:

‖|W k|x− |W k|x′‖ ≤ ‖|W k−1|x− |W k−1|x′‖ ≤ ‖x− x′‖ .

Every layer thus produces new feature maps at a lower temporal
resolution. In the end we obtain a tree of different representations,

Φj(x) = |W j |x, with j = 1, . . . , k.

4. SOURCE SEPARATION ALGORITHM

We show in this section how the inverse problem of source sepa-
ration can be solved via a sparse NMF in the pyramid scattering
domain, followed by phase recovery. We consider the supervised
monoaural source separation problem (1), in which the components
xi, i = 1, 2 come from sources for which we have training data
Xi = {xij}j≤K , and one is asked to produce estimates x̂i.

Let us consider for simplicity the features Φj(xi), j = 1, 2,
i = 1, 2, xi ∈ Xi, obtained by localizing the scattering features
of two different resolutions at their corresponding sampling rates.
Therefore, Φ1 is equivalent to a CQT and carries more localized
information than Φ2. On the other hand, Φ2 is stable at represent-
ing longer temporal contexts. We train independent models for each
source at each resolution by solving,

min
Dij≥0

∑
x∈Xi

min
z≥0

1

2
‖Φj(x)−Dj

i z‖
2 + λj‖z‖1 .

where Dj
i represents the non-negative dictionary of source i at reso-

lution j. This model exploits the linearization properties of scatter-
ing coefficients since it searches low-dimensional linear approxima-
tions.

At test time, given and input x, x1 and x2 are estimated by min-
imizing

min
x′i,zi

∑
j=1,2

∑
i=1,2

1

2
‖Φj(x′i)−Dj

i z
j
i ‖

2
2 + λ‖zji ‖1 s.t. x = x′1 + x′2 .

(6)
Problem (6) is minimized with an alternating gradient descent be-
tween x′i and zji . Fixing the zji variables and minimizing with re-
spect to x′i requires locally inverting the scattering operators Φj ,
which amounts to solve an overcomplete phase recovery problem
and can be solved with gradient descent, as shown in [20]. Fixed x′i,
solving for zji are four independent `1 non-negative sparse coding
problems, which can be solved efficiently. In this work, we use the

SPAMS package [28]. Note that unlike standard NMF problems, the
optimization in 6 is carried out directly on the temporal signal.

When the analysis operators Φj are able to produce sparse rep-
resentations of the sources, then at each level we have

∑
i=1,2

‖Φj(x′i)−Dj
i z
j
i ‖

2
2 ≈ ‖Φj(x)−Dj

1z1 −Dj
2z2‖22 , (7)

which can be used in practice to produce a greedy initialization for
(6) as follows. We obtain an estimator Φ̂1(xi) = D1

i z
1∗
i , where the

z1∗
i are defined as

z1∗
i = arg min

zi≥>0

1

2
‖Φ̂(x)−

∑
i=1,2

D1
i zi‖22 + λ‖zi‖1 .

We can produce an estimate x̂i from Φ̂1(xi) by using the complex
phases of W1x. This can be thought as running standard NMF with
CQT features.

In the proposed framework, the decomposition needs to be co-
herent at both levels of temporal resolution. The first level repre-
sentation is well located temporally and allows for a high resolution
rerepentation of the signals, while the deeper representations can be
thought as a regularizer imposing temporal coherence. In the deep
representation, intra-class variability given by small pitch and timber
variations is linearized up to temporal scales 2J without loosing as
much discriminative information as the spectrogram [16, 17].

5. EXPERIMENTAL RESULTS

Evaluation settings. We evaluated the proposed method in two
settings: speaker-specific and multi-speaker. In the first setting we
trained a speaker-specific model for each speaker in the mixture and
tested it using sentences (from the same speakers) outside the train-
ing set. In the second setting, we trained a generic model on a mixed
group of male and female speakers, none of which were included in
the test set. All signals where mixed at 0 dB and clips resampled to
16 KHz.
Data sets. We used a subset of speakers (3 males and 3 females)
of the GRID dataset [29] for evaluating the speaker-specific setting.
For each speaker, 500 randomly-chosen clips were used for train-
ing (around 25 minutes) and 200 clips were used for testing. For
the multi-speaker case we used a subset of the TIMIT dataset. We
adopted the standard test-train division, using all the training record-
ings for bulding the models and a subset of 12 different speakers
(6 males and 6 females) for testing. For each speaker we randomly
chose two clips and compared all female-male combinations (144
mixtures).
Evaluation measures. We used the source-to-distortion ratio
(SDR), source-to-interference ratio (SIR), and source-to-artifact
ratio (SAR) from the BSS-EVAL metrics [30].
Training setting. We evaluated the proposed scattering NMF
model with pyramids of one and two layers, reffered as scatt-NMF1

and scatt-NMF2 respectively. As a baseline we used standard NMF
with frame lengths of 1024 samples and 50% overlap. The dictio-
naries in standard NMF were chosen with 200 and 400 atoms for
the speaker-specific and multi-speaker settings respectively. These
values were obtained using cross-validation on a few clips sepa-
rated from the training as a validation set. In all cases, we applied
scatt-NMF using a scattering transforms with resolution Q1 = 32
and Q2 = 1. The resulting representation had 175 coefficients for
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Speaker-Specific Multi-Speaker
SDR SIR SAR SDR SIR SAR

NMF 5.6 [1.8] 13.4 [2.8] 6.9 [1.3] 6.1 [2.9] 14.1 [3.8] 7.4 [2.1]
scatt-NMF1 8.6 [1.7] 16.8 [3.3] 9.6 [1.4] 6.2 [2.8] 13.5 [3.5] 7.8 [2.2]
scatt-NMF2 8.9 [1.5] 16.8 [2.4] 9.9 [1.3] 6.9 [2.7] 16.0 [3.5] 7.9 [2.2]

Table 1: Separation with speakers-specific and multi-speaker settings. Average SDR, SIR and SAR (in dB) for NMF and proposed and
scatt-NMF2. Standard deviation of each result shown between brackets.

SDR SIR SAR
NMF-KL 5.4 7.3 7.8
RNN [25] 6.0 8.1 8.1
RNN joint disc. training [25] 7.4 11.8 7.5
scatt-NMF2 6.7 11.1 6.9

Table 2: Comparison RNN based separation, with and without joint
discriminative training with soft masks [25].

the first level and around 2000 for the second layer. For the single
speaker case we trained dictionaries with 200 atoms for scatt-NMF1

and 800 atoms for scatt-NMF2. While for the multi-speaker case
we used 400 atoms for scatt-NMF1 and 1000 atoms for scatt-NMF2.
In all cases, the features were frame-wise normalized and we used
λ = 0.1.

Results. Table 1 shows the results obtained for the speaker-specific
and multi-speaker settings. 1 In all cases we observe that the one
layer scattering transform outperforms the STFT in terms of SDR.
These results go in line with the ones obtained in [24], showing that
the choice of stable features has a strong effect in the performance.
Furthermore, there is a tangible gain in including a deeper repre-
sentation; scatt-NMF2 performs always better than scatt-NMF1. As
expected, the results obtained with the speaker-specific setting are
better than those of the more challanging problem of multi-speaker
setting.

We also compared the proposed approach with the speaker-
specific setting discussed in [25]. In this work the authors investi-
gate several alternatives of using Recurrent Neural Networks (RNN)
for speech separation. Several optimization settings are evaluated
on two given speakers of the TIMIT dataset, some of which aim at
learning short-term temporal dynamics. This is a very challenging
setting due to the very small available training data (less than 10 sec-
onds per speaker). The evaluations of scatt-NMF2 were performed
using the setting provided in [25] (with the corresponding training,
developement and testing data) while their results are taken from
the paper. scatt-NMF2 outperforms the benchmark KL-NMF in
SDR and SIR, and is competitive with the best performing networks
reported in [25], with and without joint discriminative training, see
Table 2.

In summary, these results confirm that inverse problems such as
speech source separation can benefit from the properties of stable
and highly discriminative non-linear representations, such as scat-
tering operators. Sparse inference is able to extract more relevant
information thanks to the stability to time-frequency deformations,
while the phase recovery can still be efficiently performed with gra-
dient descent.

1Audio samples are available at www.cims.nyu.edu/˜bruna/
scatt_source_separation.

6. DISCUSSION

NMF-based audio source separation techniques can be thought as
applying a synthesis operator on a feature space given by a pooled
analysis operator. Leveraging recent developemnts in signal process-
ing, we propose to substitute the first stage with a deep scattering
transform. The obtained features are designed to capture the joint
time-frequency variability of speech signals and efficiently represent
a longer temporal context. Experimental evaluation shows that us-
ing deeper representations leads to a tangible improvement in per-
formance in challenging source separation settings. A natural exten-
sion of this work is to investigate the use of learned representations
instead, or on top of, the designed ones. We expect further gains
by applying discriminative dictionary learning [23]. Future work in-
cludes testing more thoroughly the potential of the proposed model
in combination with convolutional neural networks, which have been
very successful in other signal and image processing problems.
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