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ABSTRACT

We are interested in a multichannel transient acoustic signal classifi-
cation task which suffers from additive/convolutionary noise corrup-
tion. To address this problem, we propose a double-scheme classifier
that takes the advantage of multichannel data to improve noise ro-
bustness. Both schemes adopt task-driven dictionary learning as the
basic framework, and exploit multichannel data at different levels -
scheme 1 imposes joint sparsity constraint while learning the dictio-
nary and classifier; scheme 2 adopts beamforming at signal forma-
tion level. In addition, matched filter and robust ceptral coefficients
are applied to improve noise robustness of the input feature. Experi-
ments show that the proposed classifier significantly outperforms the
baseline algorithms.

Index Terms— Transient acoustic signal, multichannel, task-
driven dictionary learning, joint sparsity, beamforming

1. INTRODUCTION

Transient acoustic signal classification is an important task in battle-
field surveillance [1–3]. Specifically, we are interested in a two-class
classification of artillery explosion. This task comes with several
major challenges. First, the classification is usually performed under
noisy environment, and the noise level varies drastically. Second, the
acoustic event usually takes place in an unknown environment with-
out realtime calibration of channel characteristic. Third, transient
acoustic signal only lasts for a very short period of time. Therefore,
each acoustic event has only a few samples, typically no more than
1000, available for feature extraction. In addition, unlike speech or
music signals, which exhibit short-time stationarity, transient signals
are unsuitable for framed analysis.

Dictionary learning with sparse codes is a popular approach for
denoising [4], noise robust classification [5–8], and other tasks [9].
A signal usually exhibits sparse pattern in some transformed space.
By properly transforming the noisy signal and projecting it onto the
L0 ball (remove small dimensions), one can effectively remove the
noise energy. While many classification schemes based on sparse
codes are generative [5–8], i.e., a dictionary is trained for each class,
and a sample is classified to a class whose dictionary can recon-
struct it most accurately, Mairal et.al. [10] proposed a task-driven
dictionary learning scheme that learns the dictionary discriminative-
ly. Given its noise robustness and discriminative natures, task driven
dictionary is an ideal framework for our task.

This research was supported in part by ARO grant W911NF-09-1-0383
and AHRQ grant R21HS022948. All results and opinions are those of the
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The presence of multiple channel (sensors) provides further flex-
ibility for our classification task. In our task, the acoustic events were
recorded with a tetrahedral sensor whose configuration is known.
With the tetrahedral sensor, we can now leverage the dependency
among different channels to improve noise robustness and/or aug-
ment feature dimension. The fusion of multichannel data can be
performed at the signal formation level or learning feature level.

At the signal formation level, beamforming is a traditional and
effective algorithm to obtain a more accurate estimate of the signal
for various applications [11,12]. Since the transient acoustic signal is
wideband, we will apply an enhanced version of MVDR [13], which
divides wideband signal into narrow bands and performs beamform-
ing within each band. The enhanced version takes into account the
channel differences and estimates the convolutionary noise.

At the learning feature level, joint sparsity constraint is widely
used in improving noise robustness of the sparse code [14–16]. Joint
sparsity enforces the sparse codes of different channels of the same
acoustic event to have the same sparse pattern, i.e., same non-zero
dimensions. It improves noise robustness because it projects noise
onto a more constrained set while the clean signal is unaffected. In
addition, the dependency between the outputs of the channel clas-
sifiers can be further exploited by introducing a regularization term
that penalizes inter-channel differences in classification outputs.

This paper proposes a classifier that is carefully tailored to this
specific task. The classifier stacks two learning schemes. The first
scheme uses the task driven dictionary learning with joint sparsity
constraint and a regularization on the channel classifier outputs. The
second scheme estimates the noise-robust feature using enhanced
MVDR and feeds it into the task-driven dictionary. In addition, the
proposed method incorporates other important techniques such as
MMSE cepstral estimation [17] and robust acoustic event detection
using matched filter [18]. Experiments show that the proposed al-
gorithm outperforms traditional approaches significantly, especially
when dataset is large with various noise levels.

There have been previous efforts to solve the multichannel a-
coustic signal classification. Zhang et. al. [19] proposed an algo-
rithm that builds a structured dictionary with joint sparsity for each
class, and assigns the test sample to the class whose dictionary has
least reconstruction error. Srinivas et. al. [20] designed a graph-
based method that learns probability dependence among different
channels from the data. However, both algorithms were designed for
very small datasets, and noise variation was limited. With a much
larger dataset now available, noise variability and test complexity
become major challenges. The proposed method in this paper ad-
dresses these challenges.

The remainder of the paper is organized as follows. Section 2
gives an overview of the structure of the proposed classifier. Section
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Fig. 1: Overall structure of the classifier.
Triple arrow indicates multichannel data/feature; single arrow indicates single channel data/feature. Grey box indicates where multichannel
fusion of takes place.

3 briefly introduces task driven dictionary learning and adapts the
training formula for the joint sparsity case. Section 4 introduces the
enhanced version of MVDR and MMSE cepstral coefficient estima-
tion. It also discusses the theoretical justification for combining both
algorithms. Section 5 evaluates the performance of the classifier.
Section 6 concludes the paper and points out some future directions.

2. CLASSIFIER STRUCTURE OVERVIEW

Fig. 1 shows the overall structure of the classifier. As can be seen,
the classifier consists of two learning schemes. It linearly combines
the two outputs to produce the final classification result. Scheme 1
extracts the event segments using a matched filter (box labeled “seg-
mentation”), and estimates noise-robust cepstral coefficients from
each channel using MMSE estimation (box labeled “Robust Extrac-
tion”). The multichannel features are then fed into the task driven
dictionary learning with joint sparsity constraint for classification.

In scheme 2, the multi-channel data are fused into one enhanced
signal, from which robust cepstral coefficients are estimated using
MMSE estimation. This uni-channel feature is then fed into the clas-
sical task-driven dictionary learning scheme for classification.

Both schemes apply task-driven dictionary learning as frame-
work, and both fuse the multichannel information to further improve
noise robustness. The difference is that in scheme 1, the fusion is
done at dictionary learning stage, while in scheme 2 it is done in the
signal formation level. In the following two sections we will focus
on dictionary learning and feature extraction respectively. Particu-
larly, we will discussion how the fusion is done at these two stages.

3. TASK-DRIVEN DICTIONARY LEARNING

3.1. Classical Task-Driven Dictionary Learning Scheme

We will use the task-driven dictionary learning proposed in [10] as
the framework for scheme 2. Let x denote the input feature, which,
in this case, is a column vector of dimension M , and let y denote its
class (0 or 1). Let M -by-N matrix D denote the dictionary. The N
dimensional sparse codeα, as a function of x andD, is obtained by

α∗(x,D) = argmin
α

1

2
‖x−Dα‖22 + λ1 ‖α‖1 +

λ2

2
‖α‖22 , (1)

where λ1 and λ2 are regularization parameters.
The sparse code α∗(x,D) is then fed into a linear classifier

defined byw. w andD are determined by minimizing the expected
loss with an L2 regularization

w,D = argmin
w′,D′

f(w′,D′) +
ν

2

∥∥w′∥∥2
2
, (2)

where ν is a regularization parameter and f(w,D) is the expected
loss function

f(w,D) = Ey,x
[
l
(
y,wTα∗(x,D)

)]
, (3)

and l(y, ŷ) is some differentiable loss function of the linear classifier.
It is proved in [10] that f(w,D) is differentiable with respect

tow andD, and it is easy to derive

∇wf = Ey,x
[
∇wl(y,wTα∗(x,D))

]
∇Df = Ey,x

[
Dβ∗α∗T + (x−Dα∗)β∗T

]
,

(4)

where

βΛC = 0

βΛ =
(
DT

ΛDΛ + λ2I
)−1 [

∇αΛ l(y,w
Tα∗(x,D))

]
,

(5)

and Λ is a set of indices of nonzero elements of α. By careful ini-
tialization and using the standard gradient descent method, we can
achieve a satisfactory local optimum.

3.2. Task-Driven Dictionary Learning with Multiple Channels

In the presence of multichannel data, the observation measurements
become an M -by-K matrix, X , where each column represents a
channel and K is the total number of channels. Accordingly, the
sparse codes α become an N -by-K matrix. Compared to the clas-
sical task-driven dictionary, the proposed multichannel task-driven
dictionary comes with two major adaptations.

First, the sparsity regularization term onα becomes a joint spar-
sity regularization

‖α‖1\2 =

K∑
k=1

‖αk,:‖2 , (6)

where αk,: is the k-th row of α. Eq. (6) would force the sparse
codes of all the channels to have same non-zero components, which
is reasonable because in the ideal noise-free case, if the feature is
selected appropriately, the features of the same event extracted from
different channels should be exactly the same.

Second, an additional regularization is imposed on the channel
classification results. With K different channels, the classifier out-
put, wTα, now becomes a 1-by-K row vector. The final classifi-
cation decision is made based on the mean output of the K chan-
nels, mean(wTα). In order to reduce variation of classification out-
puts induced by noise, another regularization term is added to the
target function so that the outputs of all the channel classifiers in
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wTα∗(X,D) are similar.
Formally, the proposed minimization problem now has two reg-

ularization terms, as shown by the second and third terms in Eq. (7)

w,D = argmin
w′,D′

f(w′,D′)+
ν1
2

∥∥w′∥∥2
2
+
ν2
2
g
(
w′Tα∗(X,D′)

)
,

(7)
where the expected loss function is still similar to (3):

f(w,D) = Ey,X
[
l
(
y,mean

(
wTα∗(X,D)

))]
, (8)

and g(·) calculates the expected summation of pairwise squared Eu-
clidean distance between the elements of the vector.

Similar to (1), the sparse code is calculated by

α∗(x,D) = argmin
α

1

2
‖x−Dα‖22 + λ1 ‖α‖1\2 +

λ2

2
‖α‖2F ,

(9)
where ‖·‖F is the Frobenius norm. Readers can contrast Eqs. (1)-(3)
and (7)-(9) to apprehend the differences between the two schemes.

With the new scheme, the gradients become much more compli-
cated. The β in (5) becomes an N -by-K matrix:

βΛC ,: = 0

vec (βΛ,:) =
(

kron
(
IK ,D

T
ΛDΛ

)
+ λ2IMK + λ1A

)−1

·[
∇vec(αΛ,:)l

(
y,mean

(
wTα∗(X,D)

))]
,

(10)
where subscript Λ, : denotes the submatrix consisting of rows spec-
ified by the set Λ; IK denotes K-by-K identity matrix; vec(·) de-
notes vectorization, i.e., turning the matrix into a column vector by
concatenating its columns; kron(·, ·) denotes Kronecker product.

The super matrixA is given by

A = B +B3C, (11)

where

B = kron
[
IK , diag

i

(∥∥α∗:,i(X,D)
∥∥−1

2

)]
, (12)

diag
i

(·) is a diagonal matrix whose entry (i, i) is given by the ar-

gument; C is a block matrix with K row partitions and K column
partitions. The (i, j)th block is

Cij = diag
k

(
α∗k,i(X,D)α∗k,j(X,D)

)
. (13)

Inverting a super large matrix increases the computational com-
plexity of dictionary learning with the joint sparsity constraint by
K3 with respect to the classical version. Nevertheless, we can still
obtain a local optimal solution by the gradient descent method.

4. NOISE ROBUST FEATURE EXTRACTION

4.1. Acoustic Event Detection

Before feature extraction, a segment that contains the acoustic signal
of the event is cut out from the original recording. In previous work
[19, 20], this is done by spectral maximum detection [21], which
essentially passes the signal through a 1st-order difference filter.

Having more knowledge about the signal, we can further im-
prove the SNR by using a matched filter [18]. Previous studies of
the artillery explosion signal [22] have shown that, despite the dras-
tic differences in ‘whiskers’ and explosive burning, different explo-

sions have a similar shape of main blast. We manually label a small
number of main blast signals randomly drawn from the training set,
and average over them. The resulting signal is then applied as the
impulse response of the matched filter.

4.2. Noise-Robust Cepstral Coefficients

Cepstral coefficients have been proven effective in speech and acous-
tic signal processing [23] tasks. One of the major drawbacks of cep-
stral coefficients is that additive noise corrupts all of the cepstral
coefficients [24]. To improve noise robustness, we apply the MMSE
cepstral estimate proposed in [17].

Denote the clean signal spectrum by s; then the vector of cep-
stral coefficients x is given by

x = DCT (log|s|) , (14)

where DCT(·) denotes discrete cosine transform operation.
Suppose the observation is corrupted by additive noise, n. We

know that MMSE estimate of x is its posterior expectation:

x̂ = E[x|s+ n] = DCT (E [ log|s|| s+ n]) . (15)

The second equality holds because DCT is a linear operation.
In [17] authors derived that if both s and n are jointly inde-

pendent Gaussian, with the i-th dimension being N
(
µi, σ

2
i

)
and

N
(
0, λ2

i

)
respectively, then

E [ log|si|| s+ n] =

log

[
ξi

1 + ξi

]
+

1

2

∫ ∞
νi

e−t

t
dt+ log |si + ni| ,

(16)

where si and ni are the i-th element of s and n, and

νi =
ξi

1 + ξi
γi; ξi =

σ2
i

λ2
i

; γi =
|si + ni|2

λ2
i

, (17)

ξi and γi can be interpreted as prior and posterior SNRs respectively.
We assume the prior variance of the signal, σ2

i , to be uniform
across all i, and is equal to the mean signal energy per frequency
bin. This is estimated from the training data. As shown in figure 1,
scheme 1 extracts noise-robust cepstral coefficients for each channel,
keeps the low quefrencies, and sends the multichannel feature to the
task-driven dictionary, where multichannel data are fused.

4.3. Beamformed Cepstral Coefficients

In scheme 2, as shown in Fig. 1, fusion is done at signal formation
level, where only 1 set of cepstral coefficients is extracted out from
multichannel data. In this case, each channel k adds a different noise,
n(k), to the same clean signal, s, and the estimate becomes

x̂ = E[x|{s+n(k)}k] = DCT
(
E
[
log|s||{s+ n(k)}k

])
, (18)

where {s + n(k)}k denotes the set of multichannel noisy observa-
tions. Similar to the derivation in [25], it can be shown that solving
(18) breaks into two steps.

By definition, the posterior probability of s can be re-expressed
in terms of sufficient statistics

p
(
s|{s+ n(k)}

)
= p

(
s|T

(
{s+ n(k)}k

))
, (19)
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where T
(
{s+ n(k)}k

)
are the sufficient statistics for s. It is s-

traightforward that a similar equality holds for log|s|, and therefore

E
[
log|s||{s+ n(k)}k

]
= E

[
log|s||T

(
{s+ n(k)}k

)]
. (20)

Moreover, it has been shown in [25] that if we assume the nois-
es of all channels are jointly Gaussian then T

(
{s+ n(k)}k

)
is the

beamformed signal estimated by MVDR [11], which is still Gaus-
sian. Therefore, the right hand side of (20) can be calculated the
same way as in (16).

In short, estimating cepstral coefficients x̂ involves two steps.
First, obtain the beamformed signal from the multichannel signal
by MVDR. Second, obtain noise-robust cepstral coefficients of the
beamformed signal as in section 4.2. To correct for convolutionary
noise, and account for different SNR’s and gains of each channel, we
apply an enhanced MVDR algorithm proposed in [13].

5. EXPERIMENT RESULTS

5.1. Dataset and Configurations

The dataset we experimented with is collected by the US Army Re-
search Lab. It contains 3941 four-channel event samples of explo-
sion sound of a certain type of artillery recorded by the tetrahedral
array. Our task is to classify if the explosion is a launch or an im-
pact. Data were collected at 5 different sites, which have different
types of additive and convolutionary noises. The range of SNR of
the data set is very wide — from -10 dB to 50 dB. The presence of
site-dependent convolutionary noise makes the problem even harder.

We extract 50-dimensional cepstral features and limit the num-
ber of atoms in the dictionary to 30. Squared loss is applied as the
loss function l. For each of the following experiment, we apply 5-
fold cross validation with training ratio being 0.5. To compute the
sparse code as in Eqs. (1) and (9), we apply the FISTA [26] algo-
rithm with 300 iterations; to compute the optimal classifier and dic-
tionary using Eqs. (2) and (7), we apply the simple gradient descent
approach with 1500 iterations.

5.2. General Results

For comparison purposes, we also look at the performance of SVM
with RBF kernel as our baseline method. We use SVM clssifier with
two different input scenarios. In the first scenario, denoted as SVM
beamform, we use beamformed noise-robust cepstral coefficients as
input; The second, denoted as SVM concat, uses concatenated noise-
robust cepstral coefficients of the 4 channels as input. To see how
much each part of the algorithm contributes to the overall perfor-
mance, we also compare several variants of our proposed algorithms,
where a part of the algorithm is removed.

Table 1 displays the results, where the uppermost panel is the
general result. As can be seen, both schemes are significantly bet-
ter than the baseline, and linearly combining the two schemes fur-
ther improves the performance. Between the two schemes, scheme
1 works better. Notice that scheme 1 has 3 times more training sam-
ples than scheme 2, and features of scheme 2 are cleaner. This results
indicates that data size is a more binding limit.

5.3. Performance Decomposition

Now, we will discuss how each part of the proposed algorithm would
contribute to the overall performance. The third sub-panel in table
1 lists the results where joint sparsity constraint or beamforming is

Table 1: Performance of proposed algorithm and its variants

Algorithm Training Accuracy Test Accuracy
scheme 1 95.76 83.63
scheme 2 92.46 82.07

final 96.25 84.39
Kernel SVM baselines
SVM beamform 99.64 77.38

SVM concat 99.47 77.20
Algorithms without joint sparsity or beamforming

mix channel 93.18 83.46
single channel 91.38 80.66

Algorithms with normal cepstral coefficients
scheme 1 95.90 81.58
scheme 2 90.99 78.62

Algorithms without task-driven dictionary
scheme 1 75.88 74.99
scheme 2 76.81 75.57

removed. The mix channel is a variant of scheme 1 where the s-
parse code is no longer constrained to have the same sparse pattern
while the rest are the same as scheme 1. Single channel is a variant
of scheme 2 where only channel 1 signal is fed into cepstral coeffi-
cients estimation instead of the beamformed signal. As can be seen,
mix channel works quite satisfactorily. Although the training accu-
racy is significantly lower than scheme 1, the deterioration does not
generalize as much to test set. This is because mix channel scheme
still fuses multichannel to a very high degree by having different
channels share the same dictionary and regularizing the classifica-
tion output of different channels to be similar. With larger training
set, however, we expect the improvement brought by joint sparsity
would become more significant. On the other hand, single channel
works much poorer than scheme 2, which is reasonable because the
noise robustness provided by multichannel fusion is completely re-
moved.

The fourth panel shows the performance of variants where nor-
mal cepstral coefficients instead of the noise-robust ones are applied
as input features. As can be seen, both schemes degrade signifi-
cantly. Particularly, the gap between training and test accuracies are
much greater, indicating noise-robust cepstral coefficients help in re-
ducing noise.

The last panel displays the performance when the dictionary is
trained with the minimum reconstruction error criterion instead of
task-driven dictionary learning criterion. We see there is a large per-
formance degradation in both schemes, as was explained in [10].
The reason for this degradation is that the dictionary is no longer
discriminative.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a double-scheme algorithm which com-
bines task-driven dictionary with joint sparsity and beamforming,
and is further strengthened by many noise robust algorithms. Ex-
periment shows that the proposed algorithm improves over baseline
algorithms. A drawback, though, is that the classifier we apply is
a simple linear classifier, while many research efforts verify that
nonlinear classifier would further improve the performance. How
to incorporate nonlinear classifier into our framework would be our
future direction.
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