
FROM SIMULINK TO SMARTPHONE: SIGNAL PROCESSING APPLICATION EXAMPLES

R. Pourreza-Shahri, S. Parris, F. Saki, I. Panahi, and N. Kehtarnavaz

Department of Electrical Engineering, University of Texas at Dallas, USA

ABSTRACT

This paper presents the steps one needs to take in order to

run a signal processing algorithm designed in Simulink on

the ARM processor of smartphones. The steps are conveyed

by transitioning two signal processing application examples

from Simulink to smartphone. The application examples

involve background noise classification and lane departure

detection. Considering that Simulink programming is widely

used in signal processing, the approach presented in this

paper is of benefit to practicing engineers and signal

processing researchers/educators in terms of the process of

making Simulink codes or models to run on smartphones.

Index Terms—Simulink to smartphone, running

Simulink models on smartphones, background noise

classification on smartphone, lane departure detection on

smartphone.

1. INTRODUCTION

ARM processors are extensively used in modern

smartphones as their main processing engine. In [1] [2], it

was shown how to use smartphones as a hardware platform

to run signal processing algorithms in real-time. For this

purpose, C programming within the software development

environment of smartphones was used. This paper presents

an alternative programming approach to run signal

processing algorithms in real-time on smartphones, in

particular on Android smartphones noting that about 80% of

all smartphones in use today are Android-based [3].

This approach is based on the newly released Android

smartphone Simulink support module by MathWorks [4].

Simulink [5] is a block-based extension of MATLAB that

allows systems to be put together in a graphical way referred

to as a model. Simulink is widely used for the programming

of signal processing algorithms. Thus, a process that easily

enables the implementation of a Simulink model on the

ARM processor of a smartphone is of interest to smartphone

app developers as well as signal processing researchers and

educators.

The objective of this paper is thus to show the steps one

needs to take in order to run Simulink models on

smartphones. To help readers to more easily perform the

steps needed for this transition, two signal processing

application examples are provided in this paper. These

applications consist of background noise classification and

lane departure detection.

The rest of the paper is organized as follows. Section 2

describes the software tools used to enable the

implementation of Simulink models on an Android

smartphone target. Section 3 covers the details of the two

Simulink example models involving background noise

classification and lane departure detection as well as an

added functionality to enable graphical user interfacing

which currently is not part of the smartphone support

provided by MathWorks. Finally, the actual real-time timing

of these implemented applications on an Android

smartphone is reported in section 4 with the conclusion

appearing in section 5.

2. SMARTPHONE SIMULINK SUPPORT

To enable the deployment of Simulink models onto an

Android smartphone target, the following software tools are

needed: Samsung Galaxy Android Support package (SGAS

package) [4], Android Development Tools Bundle (ADT

Bundle) [6], Android Native Development Kit (Android

NDK) [7]. Here it is assumed that the reader is familiar with

Simulink and the above Android development tools.

The steps one needs to take for a Simulink model to run

on an Android smartphone appear in Fig. 1. The first step

consists of adding smartphone supporting blocks from the

SGAS package to the Simulink model. The SGAS package

incorporates a library of Simulink blocks that enables

various Android smartphone i/o and sensor devices to be

used in Simulink models as either input blocks or output

blocks. For example, the Audio Capture block enables

frame-based recording of stereo audio signals using the

microphones of Android smartphones.

Next, the Simulink model with the supporting blocks

from the SGAS package needs to be compiled. When

deploying the model to a smartphone target, the SGAS

package generates all of the code necessary for the Android

application. Although some functionality is provided using

Java code, for the most part, the bulk of the signal

processing code is implemented in C via the Simulink Coder

[8] to automatically generate the C source code describing

the Simulink model.

1861978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

When running cooperatively with a computer, the

smartphone can communicate wirelessly with the computer

to enable data to be displayed within the model or sent to a

file. In addition, model parameters can get adjusted in real-

time while the application is being run. Alternatively, the

model can be deployed as a stand-alone application to a

smartphone target. A stand-alone application does not need

to be tied to a computer enabling field testing via the

smartphone. However, since the SGAS package does not

currently possess the support for implementing a user

interface for situations that parameters need to be changed or

the values of certain variables need to be captured or

recorded, this capability has been added as part of this work.

This is achieved by incorporating additional features using

the Simulink-generated source codes as the starting point.

For this purpose, the Simulink compiled model is imported

into ADT to allow adding UI (user interface) elements. It is

worth mentioning that it is possible to add other capabilities

that are currently not offered by the SAGS package. For

example, , the function System.nanoTime() allows measuring

the running time in nanoseconds and the function

getMemoryInfo() allows measuring the memory

consumption. The modified source code is then recompiled

in ADT. This generates the application as an APK app file

that can be run on the smartphone.

3. SIGNAL PROCESSING

APPLICATION EXAMPLES

3.1. Background noise classification

This application example consists of the classification part

of a previously developed signal processing pipeline. This

example involves automatic classification of different

background noise environments for the purpose of tuning the

speech enhancement component of cochlear implants

according to the classified noise type [9-11]. The pipeline

consists of two parallel paths: a speech processing path and

a noise classification path, both running in real-time. The

speech processing path includes a parameterized noise

suppression component which is automatically tuned

according to the noise class or type identified by the noise

classification path. The background noise classification is

written in Simulink, see Fig. 2, and used here as an

application example for going from Simulink to smartphone

Fig. 1. Simulink to smartphone transition flowchart

Fig. 2. Simulink model of background noise classication in [9] as an application example

1862

implementation.

The noise features considered include band periodicity

(BP) and band entropy (BE). The random forest (RF)

classifier is used to classify noise signal features. The

classification decision is made based on the most voted class

over all the trees or by majority voting. Details of the

features and classifier appear in [9].

As shown in the Simulink model of the noise

classification in Fig. 2, the leftmost blocks capture the

microphone audio signal. To extract subband features, the

noise signals are segmented into one second intervals across

8 subbands. These segments are then divided into forty 25-

ms non-overlapping frames. The components of the feature

extraction Simulink block are shown in Fig. 3. The band

periodicities of the first 7 subbands as well as the band

entropies of the first 4 subbands are used to form an 11-

dimensional feature vector. Each tree of the RF is

programmed as a separate block. The outcomes of all the

trees are combined to make a decision on the noise class by

allocating the winner to be the class with the highest number

of votes.

In order to make the application suitable for smartphone

field testing, the functionality of a UI is added to view

diagnostic information about the model. To accomplish this,

the model is first run as a stand-alone application with the

desired outputs routed to a “ToApp” block in the model.

This allows gathering all of the desired variables in one

place as the computer assigned names are difficult to

interpret. Once the application source code is generated, it is

then imported into the ADT and the tools are configured so

that the application is compiled independently from

Simulink. Afterwards it is a matter of coding the additional

desired functionality. This involves adding a console-like

textual interface. Within the C code of the application, the

timing functionality is added to benchmark the run time

performance of the model. Furthermore, the functions

necessary to call the Java code to display diagnostic

messages in the user interface are added.

3.2. Lane departure detection

The second application example involves the Simulink

model of lane departure detection provided by MathWorks

[12]. This example includes detecting and tracking road lane

markers in a video sequence by using Hough transform and

Kalman filtering blocks. The original Simulink model reads

video frames from a file and displays the outcome in the

form of an overlay on the video frames. This overlay

consists of line markers which show the boundaries of a lane

together with its surface. To make the model run on an

Android smartphone, it is modified here to receive the video

frames from the smartphone camera and show the lane

boundaries on the smartphone screen. The modified model is

shown in Fig. 4 where the LDT block denotes the fixed-

point Simulink implementation of the lane departure

detection model appearing in [12].

4. REAL-TIME PROCESSING OUTCOME

In this section, the actual smartphone implementation of the

above two application examples of background noise

classification and lane departure detection is reported.
The implemented background noise classifier is

designed for three common noise environments: babble

noise (e.g., restaurant, mall), road noise, and machinery

noise. These noise classes are encountered often on a daily

Fig. 3. Feature extraction Simulink block

Fig. 4. Simulink model of lane departure detection in [12] as an application example

1863

basis. Sample spectrograms of these three noise

environments are shown in Fig. 5. As can be seen from these

spectrograms, the noise characteristics appear different

which are captured by the subband features.

The Simulink model processes audio files or audio

signals at the sampling rate of 44.1 kHz. The training was

done on a computer and only the testing or actual operation

was carried out on the smartphone. The classification

accuracy was similar to that which was reported in [9], i.e.

about 99% with majority voting over 5 seconds. The

developed model together with the UI was deployed on a

Samsung Galaxy S4 smartphone. Fig. 6(a) shows a picture

of the smartphone with the app running in a location where

the background noise was babble. The items on the UI

included the detected class as well as the running time for

one second of audio data. As can be seen from Fig. 6, the

processing time was a tiny fraction of this time, about 0.4

ms, which easily allowed the model to run in real-time. The

app of this Simulink model running in real-time on an

Android smartphone can be downloaded from

http://www.utdallas.edu/~kehtar/SimulinkApp1.apk.

The lane departure detection model was also deployed

on a Samsung Galaxy S4, similar to the first example. The

camera block allowed selecting the image resolution from a

list of predefined resolutions as well as a desired frame rate.

The video capture frame rate was set to 30 fps. However, in

order to meet a real-time processing throughput on the

smartphone, the image resolution was set to 320×240. Fig.

6(b) shows a screenshot of this application example. The

app of this Simulink model running in real-time on an

Android smartphone can be downloaded from

http://www.utdallas.edu/~kehtar/SimulinkApp2.apk.

5. CONCLUSION

This paper has presented the steps one needs to take to run

Simulink models on Android-based smartphones based on

the support package provided by MathWorks. Two

application examples consisting of background noise

classification and lane departure detection are transitioned

from their Simulink models to actual smartphone

implementation exhibiting that these steps do not require one

to deal with C/Java and models can be directly transferred

from Simulink to smartphone.

Fig. 5. Spectrograms of three sample noise signals (x-axis in seconds

and y-axis in Hz): babble (top), road (middle), machinery (bottom)

(a)

(b)

Fig. 6. Screenshot of (a) background noise classification, (b) lane departure

detection Simulink models running on an Android smartphone

1864

6. REFERENCES

[1] N. Kehtarnavaz and S. Parris, “Teaching Digital Signal
Processing on Smartphones: A Mobile DSP Laboratory,”

http://www.icassp2014.org/show_and_tell.html, Italy, May 2014.

[2] S. Parris, M. Torlak, and N. Kehtarnavaz, “Real-time
implementation of cochlear implant speech processing pipeline on

smartphones,” Proc. of IEEE International Conference

Engineering in Medicine and Biology (EMBC), Chicago, August

2014.

[3] http://www.gartner.com/newsroom/id/2665715

[4] http://www.mathworks.com/hardware-support/android-
programming-simulink.html

[5] http://www.mathworks.com/products/simulink

[6] http://developer.android.com/sdk/index.html

[7] http://developer.android.com/tools/sdk/ndk/index.html

[8] http://www.mathworks.com/products/simulink-coder

[9] F. Saki and N. Kehtarnavaz, “Background noise classification
using random forest tree classifier for cochlear implant

applications,” Proc. of IEEE ICASSP, pp. 3591-3595, Italy, May

2014.

[10] V. Gopalakrishna, N. Kehtarnavaz, T. Mirzahasanloo, and P.
Loizou, “Real-time automatic tuning of noise suppression

algorithms for cochlear implant applications,” IEEE Transactions

on Biomedical Engineering, vol. 59, pp. 1691-1700, 2012.

[11] T. Mirzahasanloo and N. Kehtarnavaz, “Real-time dual-
microphone noise classification for environment-adaptive pipelines

of cochlear implants,” Proc. of IEEE International Conference

Engineering in Medicine and Biology (EMBC), pp. 5287-8290,

July 2013.

[12] http://www.mathworks.com/help/vision/examples/lane-
departure-warning-system-1.html

1865

