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ABSTRACT

Rotational modulation collimation (RMC) is a technique commonly
used for standoff imaging of radiological sources in the context of
homeland security. The paper presents a novel method for gamma
ray image reconstruction from modulation signals acquired by a
RMC detector prototyped by DSTO. The image is represented in a
parametric form as a weighted sum of Gaussian radial basis func-
tions. The problem is thus formulated as a parameter estimation
problem and solved in the Bayesian framework using a multi-stage
Monte Carlo technique known as progressive correction. A compari-
son with EM and MAP image reconstruction algorithms is provided.

Index Terms— Image reconstruction, emission tomography,
homeland security, Bayesian Monte Carlo estimation

1. INTRODUCTION

The potential for misuse of radiological materials, either deliberate
or accidental, has been well recognized [1]. DSTO has recently
built a prototype of a standoff imaging gamma radiation detector
which can be used to determine the exact location of a radiologi-
cal source within its field of view [2]. The prototype is based on
the technique known as rotational modulation collimation (RMC),
previously used in astronomy, medical imaging and homeland secu-
rity [3]. The RMC technique uses two attenuating masks, separated
by a known distance, co-rotating on a cylinder in front of one or more
gamma ray detectors (see Fig.1.a). As the masks rotate, the bars ob-
scure the radiation sources from the gamma detectors, by an amount
that varies as a function of the mask rotation angle. Consequently,
the count of photons coming from the radioactive sources within the
field-of-view (FoV) of the device are modulated, producing thus a
“fingerprint” that encodes the information about the location of each
source. Fig.1.b illustrates a modulated detector response, created by
a far field point source, placed within the FoV. The abscissa on the
graph in Fig.1.b is the rotation angle, while the ordinate is the photon
count.

The goal of the standoff gamma imaging device is to reconstruct
an image in which the pixel brightness corresponds to the gamma ra-
diation source intensity. The input for an image reconstruction algo-
rithm is the measured modulated detector response, such as the one
in Fig.1, affected by Poisson fluctuations. Since the typical number
of image pixels N is much greater than the number of measurements
M collected by the RMC device (for example, the DSTO prototype
features N = 10816 pixels and M = 540 measured modulations),
image reconstruction in this context is a very difficult ill-posed prob-
lem.

Formally, the image reconstruction problem using an RMC
gamma detector can be cast in the same mathematical framework
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Fig. 1. (a) A picture of the RMC gamma imaging prototype; (b) an
example of a modulated detector response for a far-field point source
of gamma radiation

as emission tomography reconstruction, developed and studied ex-
tensively for the purpose of medical imaging [4]. The most popular
algorithm in this context is the iterative expectation-maximization
(EM) image reconstruction algorithm [5]; consequently it has been
implemented in RMC prototypes [3] and [2]. The EM algorithm,
however, is known to suffer from the grainy, speckled appearance of
medical images. When applied to RMC gamma image reconstruc-
tion, the EM algorithm performs well only for point sources; for
extended, plume-like sources, it produces multiple bright speckles.

A solution to EM generated speckled medical images was to
incorporate smoothness in the reconstruction process. This has
been achieved in a principled manner using the Bayesian estimation
framework, with the Gibbs prior distribution imposed to regularize
the solution [6]. The result is the maximum a posteriori (MAP) im-
age reconstruction, which is the current state-of-the art in emission
tomography reconstruction for medical imaging. Recent research is
primarily focused on the design of the Gibbs prior [7], [8].

There are, however, important differences between emission to-
mography reconstruction for medical imaging and the image recon-
struction problem using an RMC detector in the context of home-
land security. On one hand, the measurements collected by an RMC
detector are less informative (N ≫ M ), making the task more diffi-
cult. On the other hand, the expected number of radiological sources
in the FoV is typically very small (maximum two or three) and their
shape can be approximated with reasonable accuracy by a simple
parametric model (e.g. an ellipse or a circle). In addition, image re-
construction for homeland security does not need to be as detailed as
in medical imaging applications. This motivates the approach pro-
posed in this paper: a parametric Bayesian radiological source image
reconstruction for an RMC gamma detector. An image is represented
by a weighted sum of Gaussian functions (radial or ellipsosidal). In-
stead of attempting to estimate the brightness in all N pixels of the
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gamma radiation image, the proposed parametric approach aims to
estimate a relatively small number of shape parameters (e.g. for a
circle, four parameters per source) for each radiological source. The
parameter estimation problem is solved in the Bayesian framework
using a multi-stage Monte Carlo technique known as the progressive
correction (PC) [9].

The paper is organised as follows. The mathematical formula-
tion of the problem is stated in Sec.2. The proposed algorithm is
described in Sec.3. Numerical results are presented in Sec.4. Fi-
nally, the concluding remarks including a discussion of future work
are given in Sec.5.

2. PROBLEM SPECIFICATION

The image consists of N = L × L pixels. The RMC gamma de-
tector measurement (modulated detector response, similar to the one
shown in Fig.1) can be modelled as:

yi ∼ Pyi (hi) , (i = 1, . . . ,M) (1)

where yi ∈ N0 (a non-negative integer) is the number of pho-
tons counted in the rotation i of the RMC detector, and Pn(ν) =
νn exp(−ν)/n! is the Poisson distribution. The Poisson mean
count hi in (1) is modelled as

hi =
N∑

j=1

Aijλj (2)

where λj is the activity of the jth pixel and A = {Aij} is the sys-
tem matrix, which can be determined from the design of the rotating
masks in the instrument (therefore A is assumed known). The goal
is to reconstruct the image, that is the vector λ = [λ1, . . . , λN ]ᵀ,
from the count measurement vector y = [y1, . . . , yM ]ᵀ.

While the common strategies for image reconstruction solve for
the image vector λ in a non-parametric form, we represent the image
by the weighted sum of Q Gaussian radial basis functions [10]. The
activity (brightness) in pixel j = 1, . . . , N is then modelled as:

λj(θ) =

Q∑
k=1

λjk(θ) (3)

where

λjk(θ) = wk exp
{
− (xj − x̄k)

2 + (yj − ȳk)
2

σ2
k

}
(4)

is the activity in pixel j due to the Gaussian component k. The ex-
planation of terms in (4) is as follows; wk ≥ 0 is the weight assigned
to the kth Gaussian component; (xj , yj) denotes the coordinates of
the jth pixel; (x̄k, ȳk) and σk > 0 are the mean and the standard
deviation, respectively, of the kth Gaussian radial basis function.

The image reconstruction problem amounts to estimating the
4Q-dimensional parameter vector θ = [wᵀ x̄ᵀ ȳᵀ σᵀ]ᵀ, where
w = [w1, · · · , wQ]

ᵀ, x̄ = [x̄1, . . . , x̄Q]
ᵀ, ȳ = [ȳ1, . . . , ȳQ]

ᵀ and
σ = [σ1, . . . , σQ]

ᵀ. This completes the specification of the mea-
surement function hi(θ) of the ith “sensor” (rotational angle), see
(2), as a function of the parameter vector θ. In the matrix form,
h(θ) = Aλ(θ), with h(θ) = [h1(θ), . . . , hM (θ)]ᵀ.

The problem can be now specified as follows. Given a prior
probability density function (PDF) over the parameter space, π0(θ),
and the count measurement vector y = [y1, . . . , yM ]ᵀ, the problem
is to estimate the posterior density

π(θ|y) ∝ p(y|θ)π0(θ) (5)

where p(y|θ) is the likelihood function. Making an assumption that
count measurements at different rotational angles are mutually inde-
pendent (only approximately true, because some correlation between
neighbouring angles exists), the likelihood function can be written
as:

p(y|θ) =
M∏
i=1

hi(θ)
yi

yi!
exp{−hi(θ)} (6)

3. ESTIMATION OF THE POSTERIOR PDF

Computation of the posterior density (5) is a nontrivial task and usu-
ally involves numerical approximations. The difficulty is that the
prior density is almost always considerably more diffuse than the
likelihood. Progressive correction [9] is a Bayesian technique which
computes the posterior density in stages. The initial stage starts with
the prior, while each following stage is progressively closer to the
posterior PDF. The intermediate posterior at stage t = 1, 2, . . . , T is
given by:

πt(θ|y) ∝ p(y|θ)Γtπ0(θ)

∝ p(y|θ)γtπt−1(θ|y) (7)

where Γt =
∑t

j=1 γj with γj ∈ (0, 1] and ΓT = 1. In this way
Γt is a monotonically increasing function of t, with an upper bound
of one. Note that the intermediate posterior PDF (for 1 ≤ t <
T ) is a broader (flattened) version of the true posterior. It indeed
progressively becomes closer to the posterior PDF, so that at the final
stage t = T , when ΓT = 1 we have πT (θ|y) ≡ π(θ|y).

Progressive correction can be implemented using the Monte
Carlo importance sampling method. This involves drawing samples
from an importance density and assigning weights to them. Suppose
at the (t − 1)th stage of the PC (where t ≥ 1), a Monte Carlo rep-
resentation of the intermediate posterior PDF πt−1(θ) is available
and consist of S sample-weight pairs: {θ(s)

t−1, w
(s)
t−1}1≤s≤S . At

the initial stage, this representation is formed by drawing samples
θ
(s)
0 ∼ π0, and setting the weights w(s)

0 = 1/S. The approximation
of πt−1(θ) can be written as

π̂t−1(θ) =

S∑
s=1

w
(s)
t−1 δθ(s)

t−1

(θ). (8)

where δy(x) is the standard Dirac delta concentrated at y. In order
to obtain the set of sample-weight pairs at the next stage t, that is
{θ(s)

t , w
(s)
t }1≤s≤S , first we update the importance weights accord-

ing to (7):
w̃

(s)
t = βp(y|θ(s)

t−1)
γt w

(s)
t−1 (9)

where β is a normalising constant (the weights sum to one). Impor-
tance weights {w̃(s)

t }1≤s≤S are assigned to samples {θ(s)
t−1}1≤s≤S .

In order to derive any benefits from PC, it is necessary to remove the
lower weighted members of the sample {θ(s)

t−1}1≤s≤S and diversify
the remaining ones. Hence the next step is resampling, followed by
the Metropolis-Hastings step.

Resampling involves selecting S indices i1, i2, . . . , iS from
{1, . . . , S}, such that the probability of selecting index is equals
the weight w̃(s)

t . The samples at stage t are then formed using the
Metropolis-Hastings algorithm for s = 1, . . . , S, i.e.

θ
(s)
t =

{
θ
(is,∗)
t−1 , if u < α

θ
(is)
t−1, otherwise

, (10)
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where u ∼ U[0,1] and α is the acceptance probability

α = min

{
1,

p(y|θ(is,∗)
t−1 )π0(θ

(is,∗)
t−1 )

p(y|θ(is)
t−1)π0(θ

(is)
t−1)

}
. (11)

Diversification of samples is achieved by proposing samples θ(is,∗)
t−1 =

θ
(is)
t−1+ϵs, where ϵs is drawn from the Gaussian kernel density whose

covariance matrix equals the sample covariance of {θ(s)
t−1}1≤s≤S .

Note that due to resampling, the weights assigned to {θ(s)
t }1≤s≤S

are uniform, i.e. w(s)
t = 1/S, s = 1, . . . , S. The basic steps of this

technique are summarised in Algorithm 1. Since the weights are
uniform, they feature only in lines 5 and 6, where they are used in
resampling.

Algorithm 1 : Progressive correction
1: Input: y, S
2: Select correction factors γ1, . . . , γT .
3: Draw θ

(s)
0 ∼ π0, for s = 1, . . . , S

4: for t = 1, . . . , T do
5: Comp: w̃(s)

t = β′[p(y|θ(s)
t−1)]

γt , for s = 1, . . . , S

6: Resample: draw {is}1≤s≤S based on {w̃(s)
t }1≤s≤S

7: for s = 1, . . . , S do
8: Propose θ

(s,∗)
t = θ

(is)
t−1 + ϵs

9: Compute α according to (11)
10: Draw u ∼ U[0,1]

11: Adopt θ(s)
t based on (10)

12: end for
13: end for
14: Output: {θ(s)

T }1≤s≤S

For Q > 1, the proposed algorithm is affected by the “permu-
tation invariance” [11]: a sample θ

(s)
t is equivalent to any of the

Q! permutations of its components. This ambiguity can be resolved
sooner (typically after T/2 stages), by finding the sample with the
highest importance weight, and then by imposing its permutation
to all other samples (by rearranging appropriately the order of their
components).

4. NUMERICAL RESULTS

4.1. Real data, point source

First we demonstrate the algorithm using a real dataset collected
using the DSTO RMC prototype, with a single point source (Cs-
137) placed at the distance of 260m. The prior PDF is adopted as
π(θ) = π0(w)π0(x̄)π0(ȳ)π0(σ), where

π0(w) = G(w; 1, 2), π0(x̄) = U[0.5,104.5](x̄),

π0(ȳ) = U[0.5,104.5](ȳ), π0(σ) = G(σ; 1.2, 1) (12)

Here G(·;κ, ρ) is the Gamma PDF with shape parameter κ and scale
parameter ρ. The progressive correction was implemented with T =
40 stages, using correction factors that satisfy γt+1/γt = 1.2, for
t = 1, . . . , T − 1. The sample size was set to S = 4000 and Q = 1.
Fig. 2 shows the field of view with the cloud of samples (yellow
coloured dots) indicating the location of the source (coinciding with
the true location). The source location samples were converted ap-
propriately from the gamma image pixel coordinates to the video
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Fig. 2. Results using real data and a point source (Cs-137)

image. Fig. 2 also illustrates the prior PDF (red line) and the poste-
rior PDF (blue line) for the weight w and standard deviation σ.

We point out that image reconstruction using the EM algorithm
in this scenario provides satisfactory results. Next we consider ex-
tended sources. Real data with extended sources are currently un-
available, hence the numerical study is carried out via simulations.

4.2. Simulations, extended sources

Fig. 3 shows the single-run results for the case of one (left column)
and two (right column) extended sources. The original images are in
the first row, followed by images reconstructed using the proposed
parametric Bayesian (PC, Algorithm 1), EM and the MAP image re-
construction method. The PC was implemented with T = 20 stages;
its correction factors satisfy γt+1/γt = 1.2; the number of samples
was S = 6000 and Q = 2. The prior PDFs were the same as in (12).
The shown EM and MAP reconstructed images were obtained after
250 iterations. The Gibbs prior was used with the neighborhood
window size of 11× 11 pixels.

Fig. 3 demonstrates the superior performance of the proposed
method, in comparison with EM and MAP image reconstruction al-
gorithms.

Quantitative error performance of the three considered image re-
construction algorithms (EM, MAP and the proposed) was obtained
by averaging over 100 Monte Carlo runs, with the error E between
the original image λ and the estimated λ̂, defined as:

E =

N∑
j=1

|λj − λ̂j |.

The proposed parametric algorithm creates an image estimate λ̂ by
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Fig. 3. Single run simulation results for one (left column) and two
(right column) extended sources. First row: the original images;
Second row: the final PC source-location samples; Third row: re-
constructed images using the proposed algorithm; Forth row: re-
constructed images using the EM method; Fifth row: reconstructed
images using the MAP method with the Gibbs prior

first computing the MAP estimate θ̂ from the sample {θ(s)
T }1≤s≤S

produced by Algorithm 1, followed by application of (3) and (4).
The results for the test scenarios with one and two extended

sources (shown in the first row of Fig. 3) are presented in Table 1.
Note that the results are in accordance with the qualitative compar-
isons displayed in Fig. 3: the proposed parametric image reconstruc-
tion method is by far superior to the EM and the MAP algorithms.

Table 1. Image reconstruction error E , averaged over 100 Monte
Carlo runs (standard deviations in brackets)

Single source Two sources
Proposed 5.35 (1.08) 16.29 (4.11)

EM 20.61 (2.12) 34.69 (1.38)
MAP 17.92 (1.35) 32.79 (1.08)

5. CONCLUSIONS

The paper considered the problem of image reconstruction for an
RMC gamma-ray imaging device, prototyped by DSTO. This instru-
ment was developed for the purpose of localisation of radiological
sources within its field of view. Since the expected number of such
sources is relatively small, and their extent can be approximated by
shapes in a parametric form (e.g. circle, ellipse), the paper proposed
a parametric Bayesian image reconstruction algorithm. The advan-
tage of this approach is a dimension reduction. Preliminary results
show improved performance for extended sources, in comparison
with the standard algorithms used in emission tomography for med-
ical imaging. In its current form, the proposed algorithm requires
one to specify the number of sources Q. Future work will incorpo-
rate a model selection logic [12] for a joint estimation of Q and the
parameter vector θ.

6. REFERENCES

[1] C. D. Ferguson, K. Tahseen, and J. Birira, “Commercial ra-
dioactive sources: surveying the security risks,” Monterey In-
stitute of International Studies, Center for Nonproliferation
Studies, 2003.

[2] M. Roberts, A. Eleftherakis, and M. Kocan, “The develop-
ment of prototype gamma ray imagers for radiological source
search,” in Proc. Future Land Force Conf. Brisbane, Australia,
Sep. 2014.

[3] B. R. Kowash, D. K. Wehe, and J. A. Fessler, “A rotating mod-
ulation imager for locating mid-range point sources,” Nuclear
Instruments and Methods in Physics Research A, vol. 602, pp.
477–483, 2009.

[4] M. Defrise, P. E. Kinahan, and C. J. Michel, “Image recon-
struction algorithms in PET,” in Positron Emission Tomog-
raphy, D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N.
Maisey, Eds., chapter 4. Springer, 2003.

[5] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruc-
tion for emission tomography,” IEEE Trans Medical Imaging,
vol. 1, no. 2, pp. 113–122, 1982.

[6] K. Lange, “Convergence of EM image reconstruction algo-
rithms with Gibbs smoothing,” IEEE Trans. Medical Imaging,
vol. 9, no. 4, pp. 439–446, 1990.

1854



[7] R. M. Leahy and J. Qi, “Statistical approaches in quantitative
positron emission tomography,” Statistics and Computing, vol.
10, pp. 147–165, 2000.

[8] J. Ma, Q. Feng, Y. Feng, J. Huang, and W. Chen, “Generalized
Gibbs priors based positron emission tomography,” Computers
in Biology and Medicine, vol. 40, pp. 565–571, 2010.

[9] C. Musso, N. Oudjane, and F. LeGland, “Improving regu-
larised particle filters,” in Sequential Monte Carlo methods
in Practice, A. Doucet, N. de Freitas, and N. J. Gordon, Eds.,
chapter 12. Springer-Verlag, New York, 2001.

[10] M. D. Martin, Radial basis functions: Theory and Implemen-
tations, Cambridge University Press, 2003.

[11] Y. Boers, E. Sviestins, and H. Driessen, “Mixed labelling in
multitarget particle filtering,” IEEE Trans Aerospace and Elec-
tronic Systems, vol. 46, no. 2, pp. 792–802, 2010.

[12] E. Makalic, D. F. Schmidt, and A. K. Seghouane, “A tutorial
on model selection,” in Signal processing theory and machine
learning, R. Chellappa and S. Theodoridis, Eds., vol. 1 of Aca-
demic press library in signal processing, chapter 25, pp. 1415–
1452. Elsevier, Oxford, UK, 2014.

1855


