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ABSTRACT

Recent work reported on fast speaker search over large speech
data corpora has focused on using locality sensitive hashing
(LSH) search with hashing functions approximating i-vector
based cosine distances (CosDist) for model comparisons. Be-
cause of the superior performance of probabilistic linear dis-
criminant analysis (PLDA) model reported on speaker identi-
fication (SID) in recent years, in this paper we focus on using
PLDA for fast speaker search. It is challenging to approx-
imate PLDA well with simple hashing functions, resulting
in difficulty to combine it with LSH search. As an alterna-
tive, we adopt a clustering-based pruning strategy to speed
up PLDA search. Our results show the strategy can signifi-
cantly speed up search with minimal performance loss. An-
other focus of this work is on PLDA model adaptation to mis-
matched conditions under which the fast search runs. The
technique we adopt to adapt the PLDA model is based on the
LDA adaptation method reported in [1], primarily adapting
the LDA transform. Our results show this adaptation im-
proves PLDA performance significantly (over 25% relative)
on data collected in different conditions. Our speed-up exper-
iments running with adapted LDA show that gains from the
adapted PLDA are retained after the speed-up.
Index Terms: speaker search, I-vectors, PLDA, cosine dis-
tance

1. INTRODUCTION

Speaker recognition techniques, including identificationand
verification, have advanced greatly in recent years. Two of
them are i-vector features [2] and PLDA [3], which have
resulted in superior performance in various speaker identi-
fication (SID) evaluations [4] [5]. Results have also been
presented showing PLDA yields better performance than the
CosDist metric [6][7]. Advances in communications and
recording technologies have made large scale data collection
with tens or hundreds of millions of hours of speech data per
year possible for a single speech processing application. This
has greatly increased the importance of fast speech process-
ing algorithms. This paper presents work applying i-vector
and PLDA techniques on speaker search for large speech cor-
pora. Our first focus is on speeding up PLDA-based search
while maintaining good performance. Often, the trained I-
vector extractors and PLDA models are used to process data

collected in different conditions, which usually causes perfor-
mance degradation. Our second focus is to reduce degrada-
tion of the model when applied to new conditions.

2. RELATION TO PRIOR WORK

A large body of work on speaker search for large speech
corpora has been reported. Recent work includes efforts re-
ported in [8][9] [10] [11], which all use LSH [12] for fast
search. In [8] the SID step is based on Gaussian mixture
model (GMM) super-vectors. In [9] the authors employ fac-
tor analysis in their acoustic modeling step, but the model
comparison does not use i-vectors. Since CosDist can be ap-
proximated well with LSH functions[13], both [10] and [11]
run LSH search with hashing functions designed to approx-
imate i-vector based CosDist. Both report good speed-ups
with small losses in accuracy. We use i-vectors as well, but
employ PLDA for model comparison. PLDA could not be
approximated well with simple hashing functions, so it can
not be easily combined with LSH search. For this reason we
adopt a clustering-based pruning approach to prune the search
space before running PLDA-based speaker search.

In [11], the authors chose YouTube data for investigating
robustness of the search on mismatched conditions. However,
they did not adapt the system to new conditions. We apply
an unsupervised approach to adapt PLDA to new conditions
based on the technique presented in [1].

3. PLDA FOR SID

3.1. I-vector features

Unlike joint factor analysis [14], [2] models the multiple vari-
ations as a single variable and the resulting formulation is

Mi = m + Tvi (1)

whereMi is a supervector representing a speaker utterance,
i, T is a low-rank rectangular matrix,m is the speaker- and
channel-independent supervector, obtained with a universal
background model (UBM).vi is an i-vector carrying speaker
variation information.

For SID, i-vectors are projected down to lower dimen-
sional subspace features by using LDA and then normalized
with WCCN and length normalization. These normalized fea-
tures,y, are used to train PLDA models.

1846978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



3.2. PLDA

Given two feature vectors,y1 andy2, that are length normal-
ized, the CosDist score is simply computed as the inner prod-
uct,< y1 · y2 >.

PLDA is more complex. A feature from a speaker can be
modeled as [3],

yij = µ + Fhi + Gwij + ǫij (2)

whereyij denotes thej-th sample from speakeri, hi varia-
tions between speakers;wij andǫij noises within individual
speakers.µ represents the overall mean of all speakers.hj

andwij are assumed to be normal distributions.ǫij follows a
Gaussian with diagonal covarianceΣ. All model parameters
Θ = µ,F,G, Σ are estimated on a given training data set.

Given two test features,y1 and y2, the PLDA score
is computed as a log likelihood ratio,log(P (y1, y2|Θ)) −
log(P (y1|Θ))− log(P (y2|Θ)), which can be derived to com-
pute the following term,

−log|Ln| + tr(Ln

−1ZxZ
T
x ) (3)

where,

Zx = F
T (GG

T + Σ)−1
n∑

i=1

(yi − µ) (4)

Ln is a term varying only withn, the number of test features
(in our case,n = 2), and the termFT (GG

T + Σ)−1 can be
pre-computed.

According to [17], the fastest algorithm for multiplication,
inversion and determinant matrix (DxD ) all have computa-
tional complexityO(D2.73). So, the complexity for comput-
ing PLDA score for one trial is approximatelyO(2 · D2.73 +
D2), with ignoring lower-order computations. Meanwhile,
computation complexity for CosDist isO(D). Hence, com-
puting PLDA scores is roughly2 · D1.73 + D times slower
than computing CosDist scores.

3.3. LDA adaptation

We employ within-class correction (WCC) technique in [1]
to adapt PLDA, because its unsupervised characteristics, re-
quiring no labeling of adaptation data, suits our situationwell.
The WCC aims at suppressing variability in a direction of the
shift between modes corresponding to the training and adap-
tation data that does not carry any useful information for dif-
ferentiating speakers. To identify sources in adaptation data,
we employ the same clustering approach as described in [1].
The resulting LDA transform is then estimated in the stan-
dard way using the between-speaker covarianceΣ

(trn)
B and

corrected within-speaker covariance given by

Σ
(corr)
W = Σ

(trn)
W + αΣ

(apt)
BSrc (5)

whereα is the mixing weight (we set it to 1.0) andΣ(apt)
BSrc is

the correction term estimated as shown in [1].
With LDA adapted we re-train the down-stream models,

WCCN and PLDA, for adapting them to the new condition.

4. SPEED-UP ALGORITHMS

As shown in Section 3.2, PLDA is more complex than Cos-
Dist. We feel it is a great challenge to find simple hash-
ing functions to approximate PLDA, resulting in difficulty
of combining PLDA with LSH search. Instead, we adopt a
straightforward approach: cluster audios in the corpora into
M classes based on a distance metric; for a given query au-
dio, search the class closest to it; score the given audio against
samples only from the closest class. More generally, the top-
n closest classes,n > 1, can be selected to balance between
speed-up and loss in search accuracy. Consequently, audio
samples from the top-n classes are scored.

As described in 3.1, one vector feature,y, is extracted for
each audio file. These features are used to carry out the clus-
tering and search. We investigate two commonly used clus-
tering methods , the Gaussian mixture model (GMM) and K-
means methods. Our GMM-clustering procedure is: starting
with one Gaussian, estimated from all data, iteratively split
the Gaussians until the required number is reached. At each
split we run 5 EM iterations to update the Gaussians. Af-
ter the GMM is estimated, we treat each Gaussian mixture as
one class, represented with the mixture mean and variance.
We found that using the Gaussian posteriors to find the top-n

classes was not good because the posteriors were either 1 or
0 for a majority of cases and thus resulted in only one class
selected even if more than one is desired. So we changed
to select top-n classes based on CosDist to the means of the
classes. Our results showed that the CosDist-based selection
was significantly better than the posteriors-based. In all ex-
periments we used the CosDist-based selection.

We run K-means clustering with CosDist metric as fol-
lows: randomly selectM samples as the class centroids; as-
sign samples to the classes based on their cosine distances to
the class centroids; update each class centroid with the mean
of samples assigned to the class; repeat the assignment and
update a number of times (5 in our experiments). After the
classes are estimated, top-n classes are selected based on Cos-
Dist between the test sample to the class centroids.

As noted, finding top-n classes introduces extra search
time, which needs to computeM CosDist scores and thus the
complexity isO(MD) for each query. Suppose each class
includesa samples on average, complexity for computing
PLDA scores of the samples in the top-n classes is approx-
imatelyO(na(2D2.73 + D)). So the ratio of the extra search
time over the PLDA scoring time isM /(na(2D1.73 + D)).
In general,D is in the range[100, 200] and makes the ratio a
small value, so the extra search time is negligible, compared
to the PLDA scoring time.1 Therefore, we simply measure
speed-up as the reduction degree of the trial set, computed as

1However, it would not be negligible if we used CosDist metricto score
the samples as done in [10] [11]. The top-n selection can be sped up with
advanced algorithms, like the binary-tree methods. Since it was not a major
focus, we did not pursue this further.
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the number of original trials divided by the number of trials
after pruning.

5. EXPERIMENTS

5.1. Data

We chose data from three different data collections released
by the LDC. The first is the conversational telephone Switch-
board data collections, including both Switchboard-1 and
SwitchBorad-2 releases (SWBD1n2). The second comes
from the NIST SRE data corpus. We used only the telephone
data used in the SRE evaluations from years 2004 to 2008
(SRE04-08). The third comes from the DARPA RATS (robust
automatic transcription of speech) SID data releases. We se-
lected only the clean and channel G data of the releases for the
SID task (RATS-sG). The “SWBD12” and “SRE04-08” are
narrow-band data (8K sampling) and the “RATS-sG” wide-
band data (16K sampling). In our experiments we up-sampled
the narrow-band data to 16K for the convenience of using our
tools for building the RATS evaluation systems. The three
sets include 33K, 36K and 29K audio files, respectively. 845,
1,577 and 1,336 hours of speech data were obtained for the
three sets, respectively, based on the speech activity detection
system we developed for RATS [18].

We used the “SWBD1n2” data for training and the other
two sets for test. Since the RATS data was collected under
significantly different conditions, there is a mismatch between
training and test data, which we attempt to improve using
adaptation techniques. From the “SRE04-08” data we chose
28,500 telephone audio files as enrollment samples and 600
files as test samples. From the “RATS-sG” data we chose
31,497 audio files as enrollments and 400 as tests. Merging
the samples from these two data sets resulted in 59,997 enroll-
ment and 1,000 test samples. Then we created a trial set by
including all the enrollment and test sample pairs. By design,
the 1,000 test samples were randomly selected from 1,000
different speakers who have at least one different audio sam-
ples in the enrollment samples. In this way, it was guaranteed
that each test sample had at least one target trial. The total
number of trials is 60M, out of which 6,157 were targets. We
use “sre-rats” to denote this trial set. We measure SID per-
formance in terms of equal error rate (EER), treating missing
and false alarm errors equally. All EERs are computed on this
trial set.

5.2. Baseline SID performance

We trained a 600-dimension I-vector extractor with a UBM
having 2,048 mixture components, then estimated a 100-
dimension LDA transform and WCCN(100x100) to trans-
form and normalize the I-vectors, and finally trained a PLDA
model with the normalized 100-dimensional features. The
EER of this PLDA model measured on the “sre-rats” trial set
is 6.11%.

Then, using the approach described in Section 3.3 we
adapted the LDA with the “sre-rats” data. With the adapted
LDA we re-trained the WCCN matrix and PLDA model. This
adapted PLDA produced an EER, 3.88%. So the adaptation
reduced the EER by 26% relative. The performance shown
here serves as baseline for the speed-up experiments we re-
port later.

5.3. Clustering-based speed-up

Apparently, different combinations of theM and n values
can result in the same speed-ups. We first ran the GMM-
clustering on the 60K enrollment samples three times, gener-
ating 1,024, 2,048 and 2,560 classes, respectively. For each
of the three clustering we used different top-n values to select
trials (or to prune trials). Second, we ran the K-means clus-
tering on the data twice, generating 1,024 and 2,560 classes.
Similarly, we conducted pruning with different top-n values
on the two clustering.

To fairly compare different speed-ups we always mea-
sured EER on the whole “sre-rats” trial set, by counting
pruned target trials as misses. We measured EERs at the dif-
ferent speed-ups and then plotted the EERs over the speed-ups
to demonstrate trends of EER changes over speed-ups. Plots
for the 3 GMM-clustering and the 2 K-means clustering are
shown in Figure 1.

Comparing the 3 GMM clustering, we see that at the same
speed-up the use of a larger number of classes resulted in less
EER degradation. With the use of 2,560 GMM classes, the av-
erage number of samples in each class is23.4. In our experi-
ence, less than 20 samples would not give a reliable Gaussian
estimate, so we did not investigate more than 2,560 classes.
Comparing the two K-means clustering, we have the same
observation.

Comparison of the GMM and K-means clustering with
2,560 classes shows that use of the K-means classes caused
less EER degradation at the same speed-up. Therefore, the
use of 2,560 K-means classes performed the best in this sce-
nario. According to the formula given in Section 4, with
M = 2, 560 classes, the top-n class selection only takes3.7%
of the PLDA scoring time, even at the most aggressive prun-
ing (selecting only top-1 class), which is a small cost as noted
before.

5.4. Speed-up with LDA adaptation

With the adapted LDA we re-ran both GMM-clustering and
K-means clustering to generate 2,560 classes, and then ran
different pruning and measured the EER at each pruning.
For this scenario the EERs were measured with the adapted
PLDA. The plots are also shown in Figure 1.

First, comparing the adapted GMM and K-means clus-
tering, we see that the GMM-clustering out-performed the
K-means clustering. This is the opposite of the behavior
observed in the un-adapted scenario. The reason could be
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Fig. 1. Performance (EER) vs Speed-ups with the GMM and
K-means clustering methods

0 50 100 150 200 250
0

5

10

15

20

25

30

adapted, with 2560 GMM classes
adapted, with 2560 K−means classes

un−adapted, with 2560 K−means classes

un−adapted, with 2560 GMM classes
un−adapted, with 2048 GMM classes
un−adapted, with 1024 K−means classes
un−adapted, with 1024 GMM classes

E
E

R

Speed−up (x)

that the adapted LDA reduced within-speaker covariances and
thus helped the GMM-clustering more due to use of covari-
ances in the GMM-clustering but not in the K-means cluster-
ing.

Comparing the adapted 2,560 GMM clustering against its
un-adapted counterpart, we can see that the PLDA adapta-
tion gain (with no trial pruning) is roughly retained at dif-
ferent speed-ups. For the adapted 2,560 K-means clustering,
although it produced better performance than its un-adapted
counterpart, the PLDA adaptation gain shrunk with speed-
ups, especially small speed ups (less than 50x). This indicates
that it is better to use the GMM-clustering in scenarios where
PLDA is adapted.

It can be observed that in the un-adapted scenario the use
of either the GMM or the K-means 2,560 classes cause no
EER degradation at small speed-ups in the range of[1, 10].
On the contrary, in the adapted scenario with 2,560 classes,
there is degradation in the same range. We found the rea-
son was the use of CosDist during the clustering (for the top-
n class selection). The EER of the CosDist model in the
un-adapted case was 5.37%, which is better than the EER
6.11% of the un-adapted PLDA model, so CosDist metric
helped prune impostors on which the PLDA made errors. Af-
ter adaptation, the EER of the CosDist was 3.84%, similar to
the 3.88% EER of the PLDA model, thus CosDist metric no
longer provided any helps in trial pruning.

The baseline EERs (denoted as “0x”) and EERs computed
at three different speed-up values, 11x, 110x and 1100x, with
the 2,560 classes in both the un-adapted and adapted scenar-
ios are shown in Table 1, where “un-adapt” denotes the un-
adapted scenario, “adapt” the adapted scenario and “adapt-m”
a mixed scenario where speed-up runs with the adapted PLDA
and the un-adapted 2,560 GMM classes. First, it can be seen
that in the un-adapted scenario there is no EER degradation
even at speed-up equal to 11x. Second, comparing “adapt-

Table 1. EER at different speed-up with GMM and K-means
clustering

clustering 0x 11x 110x 1,100x
un-adapt, KM2560 6.11 6.17 13.77 26.31
un-adapt, GMM2560 6.11 6.09 15.12 28.24
adapt-m, GMM2560 3.88 5.37 15.12 28.24
adapt, GMM2560 3.88 5.34 11.60 24.48

Table 2. Comparison (on EER) of the LSH approach versus
the clustering approach

Percentage (speed-up)RDLSH un-adapt, KM2560
0.01 (100x) 31.59 13.77
0.05 (20x) 12.97 7.49

m” and “adapt”, we see that re-clustering with adapted LDA
is not necessary when pruning is less aggressive (like speed-
up < 11x), but the re-clustering is desirable when speed-up
becomes more aggressive (like> 100x), because it produces
significantly lower EERs.

5.5. Comparison to the LSH approach

We tried the random projection LSH (RDLSH) fast search
approach reported in [10] on the trial set used here.2 Since
in [10] the CosDist metric was used for scoring the trials,
we also used the CosDist to score the trials selected with the
“un-adapt, KM2560” clustering. EERs measured at the same
pruning rates from uses of both approaches are listed in Ta-
ble 2, where “Percentage” indicates the percentage of trials
that survive the pruning. As can be seen, the clustering-based
approach had much lower EERs at the same pruning rates.

6. CONCLUSIONS

We have explored the use of clustering-based pruning for
speeding up the speaker search using PLDA on mismatched
conditions, with training from Switchboard data and test from
the SRE and RATS data sets. Our results show that in the
scenario without model adaptation K-means clustering per-
formed better and was able to prune more than 90% of the
search space without EER degradation. In the scenario with
model adaptation, GMM-clustering was better and was able
to prune 90% of the search space with minimal EER degra-
dation. We have also investigated adapting PLDA to data
from new conditions. Our results show that the adaptation
method we employed produced gains of more than 25% rela-
tive while adapting from Swithboard to SRE and RATS data.
Our experiments also show that with the adapted clustering,
the PLDA adaptation gains are retained at different speed-ups.
Hence, clustering-based pruning approaches are very efficient
in speeding up PLDA-based speaker search.

2Many thanks to our colleague, Ryan Leary, for running this
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