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ABSTRACT
The Threat Probability Density Map displays the outcomes of
the search effort prior to detection and is a digital representa-
tion of the probability density function of location of the exist-
ing undetected threat. The Threat Map readily provides such
diagnostics as the probabilities of the threat being present in
different areas of interest and this information can be utilised
in selection of sensor field controls. In this work we consider
a GPU acceleration of the Monte-Carlo technique for Threat
Map computation and discuss application to sonobuoys.

Index Terms— multistatic sonar, CUDA, GPU

1. INTRODUCTION

The Threat Probability Density Map, also known as the
Threat Density Probability Map or simply a Threat Map, rep-
resents the combined effect of assumed target behavior and
search history. Incze and Dasinger [1] considered the Threat
Map in application to distributed multistatic sonar search in
the Area Clearance and Area Denial tasks and demonstrated
its utility for assessment of the state of the search effort. In
the same work [1], they also discussed some potential use of
the Threat Map in selection of sonar field1 controls.

The computation of the Threat Map proposed in [1] em-
ploys the Monte-Carlo method combined with the Bayesian
inference process. The appeal of this method is in the flexi-
bility with which the threat behaviour and application of sonar
fields can be handled. However, the Monte-Carlo approach is
computationally demanding, so alternative techniques based
on diffusion type modelling were also considered [2, 3, 4, 5].

In this work we revisit a variant of Monte-Carlo technique
for Threat Map computation employed in [1], consider its ac-
celeration using CUDA GPU and discuss application of such
acceleration to concurrent selection of sonar field controls.

2. REPRESENTATIVE TASK AND DECISION
SUPPORT TOOLS

We consider the following simplified version of the Area
Clearance task discussed in [1].

1The term sonar field is used here to refer to such ping-induced functions
of threat location as Signal Excess (SE), Signal to Noise Ratio (SNR), or the
Instantaneous Probability of Detection (IPD).

A. Let A be a sizable domain in the ocean;
B. Suppose there is a sub-surface threat loitering in A;
C. Let A0 be a sub-domain of A of some importance;
D. Consider the task of deploying a set of sonobuoys and

maintaining their fields so as to keep the sub-domain A0

clear of the undetected threat.
For simplicity we assume that both A and A0 are square do-
mains, the environment is range-independent, and the pattern
in which the sonobuoys are to be de-
ployed is fixed (see Fig. 1). In our
example all sonobuoys are identical
and each of them is assumed to be
capable of acting as a source and a
receiver. In order to accomplish the
task (A to D) one has to select values
for a range of parameters which de-
fine the fields of all possible bistatic
and monostatic source-receiver pairs.
We focus on the following field con-
trol parameters:

A0

A

Fig. 1: Domain A,
subdomainA0, and the
considered sonobuoy
pattern.

• Separation distance (≡ distance between adjacent posts);
• Ping Plan (≡ sequencing of pinging sonobuoys);
• Ping Interval (≡ time between consecutive pings).

Before proceeding to selecting values for sonar field controls
one has to give some consideration to how the quality of the
selected values can be quantified and whether using separate
criteria for selection of different field controls might be an op-
tion. The Coverage Area and the IPD map, which we briefly
discuss in Section 2.1, are among more conventional decision
support tools used in planning multistatic sonar fields [6].

2.1. IPD map and Coverage Area

The IPD map is a colour-coded display of the Instantaneous
Probability of Detection (IPD) considered as a function of tar-
get location, and the Coverage Area is the area of the domain
where the IPD exceeds a cut-off value set by the user. The
IPD map and Coverage Area depend on the separation dis-
tance, so selection of the value for the separation distance can
be based on maximising the Coverage area or designing the
IPD map which meets the required criteria.
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Decision support tools based only on the IPD map and the
Coverage Area do not allow us to capture temporal effects,
which limits their use in selection of the Ping Plan and Ping
Interval. Furthermore, even when using these tools for se-
lection of the Separation Distance, care must be exercised,
especially in the scenarios exhibiting strong dependence on
the bistatic target orientation and using calculations which in-
volve the Bistatic Target Strength or Doppler-sensitive wave-
forms [1]. An example provided in Fig. 2 illustrates this.

Target heading

 

 

Transmitter

Receiver

(a) (b) (c)

Fig. 2. IPD maps for constant and bistatic Target Strengths.

The scenario for which the IPD maps in Fig. 2 (a) and (c)
were obtained is displayed in Fig. 2 (b): we consider a target,
which can be anywhere in the considered area and is moving
in the North-East direction. Signal Excess components were
generated using a Gaussian ray bundle model [7]. The IPD
map in Fig. 2 (a) was obtained using a fixed value TS0 of
the Target Strength, whereas the calculation of the IPD map
in Fig. 2 (c) used a bistatic Target Strength. These two IPD
maps are clearly very different, and this difference cannot be
eliminated through a selection of TS0.

3. THREAT MAP AND ITS COMPUTATION

Unlike the IPD map, the Threat Map considered in [1]
can capture temporal effects and it readily handles aspect-
dependent scenarios with one (as in Fig. 2) or more possible
target headings at each target location. The Threat Map is
a digital representation of the probability density function
of location of the existing threat given it has not been de-
tected. Integration of the Threat Map over the entire domain
A (see Fig. 1) gives 1, while its integration over A0 gives the
probability P0(t) that the undetected target is present in A0.

In this section we revisit the Monte-Carlo algorithm for
computation of the Threat Map and discuss its acceleration
using CUDA GPU computation.

3.1. Monte-Carlo method for Threat Map computation

Threat Map computation using a Monte-Carlo method based
on Bayesian inference was proposed in [1]. Fig. 3 provides
a schematic and some nomenclature used in the algorithm.
Further comments are provided below:

• In this method we launch a large number of virtual tar-
gets or particles (represented as red dots in Fig. 3). These
virtual targets are possible realisations of the actual target.
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Fig. 3. Monte-Carlo method of Threat Map computation.

• Conditional probabilities P (Tk | Bt) are used to assign
weights wp(k) to each of the particles (k = 1, . . . , K),
where Bt is the event that the target has not been de-
tected by time t and Tk is the event that the actual target
has been realised as virtual target k. It is assumed that
P (Tk) = 1/K. Bayes theorem is used to transform the
weights wp(k) to the form

wp(k) = P (Bt | Tk)
/ K∑

k=1

P (Bt | Tk) (1)

and the multistatic IPD history which particle k has been
exposed to during all pings before time t is used to com-
pute P (Bt | Tk).
• The entire area A is covered with a grid having a suffi-

ciently small cell size. In Fig. 3 we use a linear index n
(n = 1, . . . , N ) for cell enumeration.
• The weight of cell Cn is calculated as the total weight of

all particles which are currently inside Cn. Note that the
notation Tk is also used in Fig. 3 as a shorthand for virtual
target k. Threat PDF in the cell is obtained as the ratio of
cell weight to the cell area.
• Similarly, the probability of presence of the undetected

target in A0 is obtained by calculating the total weight of
all particles inside A0.
• In the process of Threat Map computation, particle weights
{wp(k)}k=1,...,K are updated upon every sonar transmis-
sion. Changes in cell weights {wc(n)}n=1,...,N are driven
by particle motion and changes in particle weights.

A pseudo-code for Threat Map computation is provided below.

Key variables:

− X, Y, Vx, Vy: particle coordinates and velocity compo-
nents (length K vectors);

− Wp and Ip: particle weights and particle cell indexes
(length K vectors);

− Wc: cell weights (length N vector).

Single step update:

A. Update X, Y, Vx, Vy

B. Use X,Y and grid parameters to update Ip

C. Update Wp if there is a transmission at this time-step
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D. Compute Wc from {Wp, Ip} using the process:
for k=1:K

Wc(Ip(k))=Wc(Ip(k))+Wp(k);
end

3.2. GPU computation of Threat Map

Each particle in Threat Map computation has to be consid-
ered separately, so, when the number of particles is large,
the sequential processing is rather slow. In order to accel-
erate the computation we turned to parallel processing using
CUDA GPU [8]. CUDA is a parallel computing platform and
a programming model which allows one to program Graph-
ics Processing Units (GPUs) using high-level languages such
as C/C++, or FORTRAN [8, 9, 10]. CUDA C has a C-style
syntax, and CUDA functions, called kernels, are called from
a CPU (host) code, while their execution occurs on the GPU
(device). The invoked kernel is executed by every launched
thread. Typically a thread is designed to operate on a portion
of data, and the assignment of the thread to the data subset is
facilitated through the use of built-in variables threadIdx,
blockIdx, blockDim and gridDim. Kernel invocation
syntax allows such execution configuration parameters to be
passed as the “number” of threads per block, “number” of
blocks and the amount of shared memory allocated for each
block. The hardware and software infrastructure required for
development and execution of CUDA GPU applications is
summarised in [11].

We developed our GPU application for Threat Map com-
putation as a set of CUDA kernels callable from MATLAB R©

using its CUDA GPU interface accessible through the Parallel
Computing ToolboxTM [12]. The key utilities in this interface
are the gpuArray and CUDAKernel classes. Objects of the
gpuArray class allow deployment of logical and fundamen-
tal numerical arrays onto GPU, while CUDAKernel objects
provide access to functionality of kernels developed in CUDA
and pre-compiled into the PTX form [13]. CUDAKernel ob-
jects are evaluated using method feval with execution con-
figuration parameters passed implicitly as object properties.

We defined kernels for propagating particles (Step A of the
pseudo-code in Section 3.1), updating their weights Wp (Step
C of the pseudo-code), and updating cell weights Wc (Step
D of the pseudo-code). Note that the process in Step D is
a histogram type calculation, which in a multi-threaded case
can result in a racing condition when two or more threads
attempt to access and change data at the same address simul-
taneously. Such racing conditions are prevented through the
use of atomic operations [8, 9].

We deploy the key variables listed in Section 3.1 as
gpuArray data. A small subset of data is deployed as
constant memory for a faster access. Our application uses
curand library [14] to generate random numbers in the
device code. To call curand library functions we have to
define global device data of type curandState. Since

such data type cannot be deployed using gpuArray objects,
separate kernels have to be used to perform the associated
initialisation and clean-up steps.

We also used gpuArray objects to deploy precomputed
Signal Excess (SE) data components consisting of the Target
Echo data obtained for a standard target with Target Strength
of 0 dB and Reverberation Level data. Because the GPU
memory is somewhat limited we have to be mindful about
how much data is deployed on to the GPU. In the bistatic
range-independent case considered in our application, the
Signal Excess is a function of four variables, viz. range,
azimuth, separation distance and depth. We reduced the di-
mensionality and hence the size of SE data that had to be
deployed to GPU by taking advantage of the monostatic re-
duction for Target Echo computation and using the fact that
the Reverberation Level in the considered range-independent
environment is a nearly constant function of depth.

Implementing the components for Threat Map computation
as CUDA kernels allowed us to achieve a significant improve-
ment in the speed of execution. For example, tests run on
our CPU/GPU configuration (Intel R© CoreTM i5/GeForce GT
740M) showed that IPD computation by a CUDA kernel is
30-40 times faster than by a well-vectorised MATLAB code
expected to run at the same speed as its C equivalent.

3.3. Sample depletion and resampling

In the process of Threat Map computation we have to per-
form resampling in order to address an issue similar to what
is known in particle filtering as sample depletion [15] or de-
generacy problem [16] when very few particles have large
weights, while weights of the rest of the particles become
very small. In our case this results in an instability of the
associated section of the plot of P0(t) due to reduction of the
number of particles effectively used in computation to only
those with high weights.

rk ∈ U(0, 1)
︸︷︷︸
w1

︸ ︷︷ ︸
w2

︸︷︷︸
wn

︸ ︷︷ ︸
wN

⇒ Ip(k)=n
0 1

Fig. 4. Resampling procedure.

Resampling produces a set of K equally-weighted particles
{xp(k), wp(k) = 1/K} spread over the cells of the Threat
Map so as to represent a cell-wise constant PDF obtained
from the cell weights {wn ≡ wc(n)}. First we use the in-
version method [17, Ch. 3] to determine the index Ip(k) of
the cell (see Fig. 4), then we obtain xp(k) by sampling from a
uniform distribution defined in the respective cell. The resam-
pling has to be carried out before the degeneracy occurs – we
can choose to resample every fixed number of pings or upon
reaching a threshold set for the effective number of samples
N̂eff ≡ 1/

∑K
k=1 w

2
p (k) [16, Sec. 3.2].
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3.4. Effects of kernel smoothing

The obtained Threat Map is a cell-wise constant function of
target location. We can obtain a continuous form of the Threat
Map using Kernel Smoothing [18]. If bandwidth parameters
employed in this procedure are small in comparison with the
size of A0, then the difference between plots of P0(t) ob-
tained using a cell-wise constant and smoothed Threat Map
is small (see Fig. 5), although the Maps themselves may be
visibly different (cf. Fig. 5 (a) and Fig. 5 (b)). The Kernel
Smoothing in the computation summarised in Fig. 5 was car-
ried out using KDE Toolbox developed by A. Ihler [19]. In
this example, we used Gaussian kernels with the bandwidth
parameter set to a value twice as large as the cell size. Kernel
smoothing requires a significant computational effort. Fig. 5
shows that this step is not essential for computation of P0(t).
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Ping interval: 120 sec
Sep. Distance: 10000

 

 

P
0
(t): KDE smoothed PDF

P
0
(t): non−smoothed PDF

(a) (b)

Fig. 5. Effects of kernel density smoothing on the probability
of presence P0(t) and the Threat Map. Displays: (a) cell-wise
constant Threat Map, and (b) smoothed Threat Map.

4. FIELD CONTROL SELECTION AND DYNAMIC
PING SEQUENCING

The ability of applied sonar fields to produce the probability
of presence P0(t) which settles down at a steady state value
P̄0 depends on the considered scenario, the selected ping plan
and the values used for the separation distance d and ping
interval Tp. For example, if a target uniformly distributed in
A is stationary and its target strength is isotropic, then the
probability of undetected presence just after ping M is

P0(tM ) =

∫

A0

ηM (x)dA/

∫

A

ηM (x)dA

where ηM (x) =
∏M

m=1(1− IPDm(x)), tM is the time of the
ping transmission, and IPDm(x) is the single-ping multistatic
probability of detection induced by the source transmitting at
time tm. Because ηM (x) is positive and decreasing with M ,
it converges as tM →∞ and so does P0(tM ).

Use of P̄0 as a decision support tool was proposed in [1].
In our field control selection task, we first fix a Ping Plan
and obtain d and Tp by minimising the steady state value
P̄0(d, Tp). Generally, P̄0(d, Tp) tends to decrease as Tp de-
creases, which reduces the task of minimising P̄0(d, Tp) to
minimising P̄0(d, T̄p) with respect to single variable d, where
T̄p is the smallest value affordable for the ping interval. The
best ping plan can be selected from a finite pre-defined set of
plans using the smallest of the obtained minima.

Ping sequencing can also be formed dynamically. One pos-
sible strategy, which often has performance similar to a pre-
defined sequential selection [3], is choosing the post for the
next transmission randomly. Intelligent ping sequencing us-
ing the probability of threat presence is discussed in [3]. Fol-
lowing [3] one can employ the look-ahead technique in which
projected values P0(t;u) of the probability of presence are
first obtained for each candidate post u, and the sonobuoy at
post u0 = argminu P0(t;u) is selected to be the next source
for pinging at time t. Fig. 6 illustrates a ping sequencing
technique which is computationally less expensive. In this
technique we partition A0 into zones Zu (see Fig. 6 (a)) and
assign them to the respective posts. Selection of post u0 for
pinging at time t is carried out by comparing the total particle
weights pu(t−) in different zones just before the transmission
and choosing u0 = argmaxu pu(t−). This selection is mo-
tivated by a crude model in which the effect of transmission
by source u is emulated by reduction of pu(t) to zero. Within
this model, the look-ahead and zoning techniques produce the
same ping sequences. Plots in Fig. 6 (b) show that these two
methods exhibit a comparable performance even when the ef-
fect of sonar transmission is evaluated using proper IPD com-
putation.
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Fig. 6. Partitioning of A0 into zones (a) and comparison of
performance of different ping sequencing methods (b).

5. CONCLUSION

In this work we revisited some aspects of Monte Carlo
method of Threat Map computation and showed how it can
be accelerated with CUDA GPUs. Considered tests and
examples indicate that such an acceleration creates further
opportunities for using the Threat Map in selection of sonar
field controls and dynamic ping sequencing.
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