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[3]Université de Bordeaux, Bordeaux INP, IMS, UMR CNRS 5218, Talence, FRANCE

ABSTRACT
This paper deals with a phase-coded waveform which combines two
binary phase codes, each impacting on specific properties of the
radar receiving channel. After giving a detailed analysis of the ex-
pression of the received signal after processing when the Gaussian
clutter is modeled by a pth-order autoregressive process, we focus
our attention on the choice of the two phase codes: one aims at in-
creasing the unambiguous range whereas the other is chosen by tak-
ing into account several criteria such as the detection performance.
For this purpose, we suggest determining the Pareto fronts of 1st, 2nd

and 3rd orders by means of an exhaustive search. Given the three
Pareto fronts for different types of clutters simulated by making the
AR parameters vary, we provide an automatic way to determine, be-
fore embedding it, the most robust phase codes using a fuzzy logic
operator.

Index Terms— phase codes, autoregressive modelling, Pareto
fronts, fuzzy logic, radar, unambiguous range.

1. INTRODUCTION

The primary mission of a radar, as stated in its acronym RAdio De-
tection and Ranging, is to detect a target. However, the design of
the waveform and its processing must be addressed by taking into
account several issues such as the detection performance despite of
the clutter, the range and speed ambiguity resolution1, etc.

Let us first look at the approaches that have been proposed to
maximize the probability of detection. When the received signal is
altered by thermal noise only, the matched filter aims at maximiz-
ing the signal-to-noise ratio. In that case, all the waveforms with a
given energy provide the same probability of detection [1]. When
the received signal is disturbed by a colored Gaussian clutter and a
thermal noise, De Maio et al. [2], [3] considered a pulse train with an
interpulse phase code and addressed its optimization by combining
the detection performance and a similarity constraint with a given
phase code such as Barker codes, P3 codes, etc. These codes have
been chosen as references because they lead, after matched filter-
ing, to the desired properties in terms of sidelobe height [4]. How-
ever, in the presence of clutter, the matched filter alone is no longer
the ”optimal” processing. Indeed, maximizing the signal-to-clutter-
plus-thermal-noise ratio has to be done in two filtering steps: the
first one whitens the colored clutter whereas the second one is a filter
matched to the delayed and Doppler-shifted signal after the whiten-
ing filter. In that case, the probability of detection is a function of

1In pulse-Doppler radar, the target range is determined modulo a param-
eter called ”range ambiguity” inversely proportional to the pulse repetition
frequency (PRF). The target speed is determined modulo a parameter called
”speed ambiguity” proportional to the PRF. Therefore, the user has to choose
between range and speed ambiguities.

the transmitted signal and the covariance matrix of the interference
[1]. Therefore, Patton et al. [5] suggested maximizing the signal-to-
interference-plus-noise ratio and added a constraint on the sidelobes
of the optimal waveform autocorrelation function. In [6], assuming
the disturbance covariance matrix is known, the authors addressed
the waveform design through a multiobjective approach in order to
combine range and Doppler resolution capabilities. More recently
in [7], we investigated the following scenario: the received signal
is first processed in a low-resolution ”receiving channel”. When a
detection occurs, the received-signal samples are reprocessed in a
high-resolution receiving channel to obtain a range profile. This sce-
nario has the advantage of reducing the computational cost of the
whole processing chain. In addition, the target illumination time is
increased. Assuming a colored Gaussian clutter with thermal noise,
we addressed the waveform design by optimizing several criteria,
such as the probability of detection. Given this multiobjective opti-
mization issue, we proposed to search the Pareto front by modelling
the clutter with a first-order autoregressive (AR) process.

In the above approaches, the range ambiguity issue is not taken
into account. In current radar, this issue has been addressed by
changing the PRF according to the configuration, i.e. air-to-air, air-
to-ground, and to the needs, i.e. long range detection, mid-range
tracking, etc. Another way to address the ambiguities is to consider
two trains of pulses with two different PRFs. The resulting PRF is
the least common multiple of the two PRFs [8]. When there is no
clutter and only thermal noise, a third possibility consists in using an
interpulse phase code the autocorrelation of which has specific prop-
erties in terms of sidelobes. For instance in [9], Levanon uses a pair
of mismatched codes such that their circular cross-correlation has no
sidelobes up to a certain range. However, the circularity implies that
the first and the last sequences cannot be used for detection.

In this paper, we suggest combining inter and intrapulse phase
codes processed in a single receiving channel. This combination
has the following advantages: the interpulse code is used to extend
the radar unambiguous range whereas the intrapulse code is used to
drive the performance of the receiving channel. Given this scenario,
our contribution is threefold:
1/ We provide a detailed analysis of the expression of the received
signal after processing when the clutter is modeled by a pth-order
AR process (AR(p)). Such a model has the advantage of modelling
the clutter with few parameters. By modifying the AR parameters,
different correlation properties for the clutter can be simulated. In
addition, the inverse of its covariance matrix has an analytical form
based on the AR parameters;
2/ Using the analytical expression of the received signal after pro-
cessing, we present a way to select both codes;
3/ We propose an automatic way to a priori choose the intrapulse
phase code. For each type of clutter, we define the Pareto fronts of
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1st, 2nd and 3rd orders and compute them. Then, we deduce the per-
centages of presence of each code in the three sets of Pareto fronts.
Finally, we combine them with a fuzzy logic operator. The most
relevant codes correspond to those which remain the most often on
the Pareto fronts when the correlation properties of the clutter vary.
Since the computation of the Pareto fronts can be carried offline, i.e.
not on the embedded system, the computational cost required for the
selection of the intrapulse phase code is not a constraint.

The remainder of this paper is organized as follows: in section 2,
we present the phase-coded waveform and its processing. Then, we
analyze the influence of an AR(p) clutter model on the received sig-
nal. Section 3 deals with the selection of the two codes and simula-
tions results are provided in section 4.

2. HYBRID WAVEFORM MODEL AND PROCESSING AT
THE RECEIVER

2.1. Transmitted waveform and its processing at the receiver

Let us study the waveform s(t) which is a train of K phase-coded
pulses combining an intra and an interpulse binary phase codes given
by:

s(t) =

K−1∑
k=0

ckp(t− kTr) (1)

where ck = ±1 is the kth element of the interpulse phase code c of
lengthK, Tr the pulse repetition interval (PRI) and p(t) the pulse of
duration T defined by:

p(t) =

M−1∑
m=0

dmu(t−mTc) (2)

with dm = ±1 the mth element of the intrapulse phase code d of
sizeM and u(t) the rectangular function of duration Tc. For the sake
of clarity, an illustration is presented in Fig. (1) where N = Tr−T

T
.

Fig. 1. Proposed waveform with inter and intrapulse phase codes

Then, we consider a point target whose range is proportional to
the travel time τ0 of the emitted signal. τ0 can be expressed as:

τ0 = `0Tc + ε0 with 0 6 ε0 < Tc , 0 6 `0 < KNM (3)

Assuming a known Doppler frequency and under the narrowband
hypothesis, the proposed processing on the received signal y(t) is
given in Fig. (2) and aims at estimating `0. In the following, `
denotes a candidate range gate and is such that 0 6 ` < KMN .

Fig. 2. Processing at the receiver

Given Fig. (2), the received signal after processing is the sum
of a function r and a term of disturbance which contains the thermal
noise and the clutter after processing. It can be shown [7] that r
satisfies:

r(`0, `) = (c⊗ e1 ⊗ d)H (J`0)HM−1J` (c⊗ e1 ⊗ d) (4)

where .H denotes the conjugate transpose, ⊗ the Kronecker prod-
uct, e1 the N × 1 vector defined as e1 = [1 0 ... 0]T , J the
KMN ×KMN ”shift” matrix which has ones on the first sub-
diagonal and zeros elsewhere, and M the covariance matrix defined
by:

M = Γ + σ2I (5)
with Γ the covariance matrix of the clutter, I the KMN ×KMN
identity matrix and σ2 the variance of the additive thermal noise.

2.2. Analysis of the received signal for an AR(p) clutter model

In order to address the selection of the two phase codes, we first
focus our attention on the analytical expression of the received signal
r when the clutter is modeled by an AR(p)2 defined as follows:

xn =

p∑
i=1

aixn−i + un (6)

with un a zero-mean complex white Gaussian noise with variance
σ2
u. Using this kind of model is of interest for the following reasons:

1/ It is well suited for Gaussian clutters [10],
2/ Different types of clutters can be simulated by modifying the AR
parameters. However, the parameters must be selected such that sta-
bility is satisfied. Among the well-known criteria, one can first select
the poles inside the unit circle in the z-plane and then deduce the AR
parameters, e.g. |a1| < 1 for an AR(1). As an alternative, one can
directly analyze the set of AR parameters. Thus, for an AR(2) pro-
cess, a1 and a2 have to be in the so-called stability triangle [11].
3/ The analytical expression of the inverse covariance matrix Γ−1

can be used to analyze the properties of the received signal. Thus,
Γ−1 is given by [12]:

Γ−1 =
1

σ2
u

(FFH −GGH) (7)
with:

F = I−
p∑

i=1

aiJ
i and G = −

p∑
i=1

aiJ
KNM−i (8)

Given (4), (7) and (8), and assuming that the thermal noise is
negligible compared to the clutter, i.e. M−1 ≈ Γ−1, let us show
that the received signal r(`0, `) can be approximated up to the
factor 1/σ2

u by the difference of two terms:
1/ A first one denoted r1 which is due to FFH in (7). It only de-
pends on the difference `− `0. This property is of real interest at
the receiver as we do not know the target position and so the value
of `0. If the target is located in another range cell `0 + ∆`0 , then r
is shifted by ∆`0 ;
2/ A second term denoted r2 which is due to GGH in (7). It does
not satisfy the above property. However, we are going to show that
it is equal to zero in many cases.
Proof of the first property: r1(`0, `) = r1(`0 − `) = r1(λ)

Substituting (7) in (4), r1 is defined as:

r1(`0, `) = (c⊗ e1 ⊗ d)H (J`0)HFFHJ` (c⊗ e1 ⊗ d) (9)

By replacing (8) in (9) and by introducing the variable λ = `0 − `,
after some developments and simplifications, one can show that:

r1(`0, `) = r1(λ) =

p∑
q=−p

αqrc⊗e1⊗d(λ+ q) (10)

2It should be noted that xn can be seen as the output of the infinite im-
pulse response (IIR) filter whose input is un and whose transfert function is:
H(z) = 1

1−
∑p

i=1 aiz−i = 1∏p
i=1 (1−piz−i)

with pi the poles of H(z).
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where the coefficients αq are given by:

αq =


1 +

∑p
n=1 a

2
n q = 0

−a|q| +
∑p−|q|

n=1 anan+|q| 0 < |q| 6 p− 1
−ap |q| = p

(11)

and rc⊗e1⊗d denotes the autocorrelation function of the sequence
c⊗ e1 ⊗ d which satisfies:

rc⊗e1⊗d(λ) =

K−1∑
k=−K+1

rc(k)rd(λ− kMN) (12)

with rc and rd the autocorrelation functions of the phase codes c
and d respectively.
It should be noted that r1 can be seen as the autocorrelation function
of the sequence c⊗ e1⊗d after it has been filtered by the finite im-
pulse response (FIR) filter of impulse response [1 − a1 ... − ap].

In addition, including (12) in (10), r1 can be rewritten as fol-
lows:

r1(λ) =

K−1∑
k=−K+1

rc(k)

(
p∑

q=−p

αqrd(λ+ q − kMN)

)
(13)

Introducing the function f(λ) =
∑p

q=−p αqrd(λ+ q), (13) be-
comes:

r1(λ) =

K−1∑
k=−K+1

rc(k)f(λ− kMN) (14)

At that stage, let us look at the properties of r1(λ): as d is of size
M , rd(λ) = 0 when |λ| >M . Thus, f(λ) = 0 when |λ| >M +p.
Provided that N > 3 and M > 2p, there is no overlap between the
pattern f(λ) and its shifted versions, see Fig. (3).

Fig. 3. Representation of r1(λ)

As shown on Fig. (3), the kth received pulse after processing is
proportional to rc(k). This property will be useful for the selection
of the interpulse phase code, see section 3.1.
Proof of the second property: r2(`0, `) = 0 for some `0

From (4) and (7), r2(`0, `) is given by:

r2(`0, `) = (c⊗ e1 ⊗ d)H (J`0)HGGHJ` (c⊗ e1 ⊗ d) (15)

For any order p, we can show that r2 does not depend on the differ-
ence `0 − `. For instance for an AR(2), (15) becomes:

r2(`, `0) =
−1

σ2
u

(c⊗ e1 ⊗ d)H(J`0)H
[
a1a2ẽ1ẽ

H
2 + a1a2ẽ2ẽ

H
1

+ (a21 + a22)ẽ1ẽ
H
1 + a22ẽ2ẽ

H
2 + a1a2ẽKNM ẽH

KNM−1

+ (a21 + a22)ẽKNM ẽH
KNM + a2a1ẽKNM−1ẽ

H
KNM

+ a22ẽKNM−1ẽ
H
KNM−1

]
J`(c⊗ e1 ⊗ d) (16)

with ẽm,m = 1...,KNM the KNM × 1 canonical basis vectors.
Nevertheless, given the sparsity of the sequence c⊗ e1 ⊗ d and the
structure of GGH , it can be shown that:

r2(`, `0) = 0 ∀`0 ∈ Ω (17)

with Ω =
{

[p;MN − 1−M − p]∪ [kMN ; kMN − 1−M − p],
k ∈ [1;K − 1]

}
.

In other words, r2(`, `0) = 0 when the target neither lies in the first
p range gates of the first recurrence, nor in the lastM+p range gates
of each recurrence. In that case:

r(`0, `) ≈
1

σ2
u

r1(`0 − `) (18)

(18) is a key property used in the next section for the selection of c
and the optimization of d.

3. SELECTION OF THE INTER AND INTRAPULSE
PHASE CODES

3.1. Choosing the interpulse phase code c to increase the unam-
biguous range

In this subsection, we first illustrate with an example how to increase
the unambiguous range when the phase-coded received signal is al-
tered by thermal noise only. Then, we show how this method could
be applied for a colored Gaussian clutter modeled by an AR(p).
First case: thermal noise only

Depending on the correlation properties of c, various cases can
occur. Two examples of the received signal after matched filtering
(MF) are represented on Fig. (4), where dm = 1,∀m ∈ [0;M − 1].

Fig. 4. Received signal after MF

On Fig. (4), case a), the main peak and the neighboring peaks
cannot be distinguished, hence the range ambiguity is equal to
cTr/2. However, by choosing c such that:

rc(−1) = 0 (19)

the unambiguous range is multiplied by two, see Fig. (4), case b).
The constraint (19) is satisfied for odd values ofK. Indeed, whenK
is even, the computation of rc(−1) corresponds to the sum ofK−1
terms that are equal to +1 or −1. Such a sum cannot be equal to 0.
For any odd values ofK, one solution is for instance the code whose
(K+1)/2 first elements are ”-1” and the (K−1)/2 others alternate
from ”+1” to ”-1”.
Second case: colored Gaussian clutter and thermal noise

From (14), (17) and (18), and following the same reasoning as
in the thermal noise case, the ambiguous range can be doubled, i.e.
it is equal to 2× cTr/2, provided K is odd.

In order to generalize this approach so that the unambiguous
range becomes equal to k × cTr/2, with k an integer such that
k 6 K, we could choose the codes that satisfy :

rc(−1) = rc(−2) = ... = rc(−k + 1) = 0 (20)

However, such codes do not exist. Indeed, assuming a phase code c
of odd length K, the computation of rc(2) corresponds to the sum
of K − 2 terms that are equal to +1 or −1. Such a sum cannot be
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equal to 0.
Among the possible alternatives, we could look at the relevance

of the relaxed constraint:
rc(−1) 6 1, rc(−2) 6 1, ..., rc(−k + 1) 6 1 (21)

This kind of problem has been studied in the litterature and led to the
Barker codes, which meet this constraint with k = K but exist only
for K ∈ {2, 3, 4, 5, 7, 11, 13}.
Given this brief study, we can conclude that the unambiguous range
can be at least multiplied by 13. For greater values ofK, we are cur-
rently investigating how to improve this result in order to guarantee
a value for k given K.

3.2. Automatic selection of the intrapulse phase code combining
a multiobjective approach and fuzzy logic

General approach
For the choice of d among the 2M different phase codes, we

suggest optimizing the following criteria related to r: 1/ the maxi-
mization of the mainlobe height, which is equivalent to maximizing
the probability of detection, 2/ the minimization of the mainlobe
width, which improves the range resolution, 3/ the minimization
of the highest sidelobe, which contributes to the reduction of false
alarm detections.

These three criteria are related to the first received pulse, i.e. λ
such that r1(λ) = rc(0)f(λ) in (14). Note that the code c does
not take part in the optimization. Furthermore, the optimization is
only possible when r2(`0, `) = 0. We consider a multiobjective
approach in order to select the intrapulse phase codes d.

Let SM be the set of all binary phase codes of length M . The
Pareto front P is computed by going exhaustively through SM and
keep the non-dominated solutions defined as the solutions such that
there is no other phase code that can simulaneously improve one or
more criteria without degrading the others. P2 and P3 which are
the Pareto fronts of 2nd and 3rd orders are then computed on the sets
SM\P and SM\(P ∩ P2) respectively.

In order to study the robustness of the three Pareto fronts to
clutter variations, we compute P , P2 and P3 for several values of
the AR parameters which are gathered in the set D. Then, we com-
pute the percentages of presence of each code d in the sets of P , of
P2 and of P3. Our purpose is to automatically find the most robust
phase codes to clutter variations. In other words, we seek the phase
code d which is the most often in the set of P , then the most often
in the set of P2 and then the most often in the set of P3. We also
want the phase code to remain the most often on one of the Pareto
fronts when the AR parameters vary. Denoting p1, p2 and p3 the
percentages of presence in P , P2 and P3, this relation of order is
tantamount to seeking the code d which maximises p1, then p2 and
then p3, and maximizes also p1 +p2 +p3. To obtain a score for each
code that would make it possible to sort them, we use the fuzzy logic
operators [13]. A pessimistic operator such as the min function or
an optimistic operator such as the max function are not suitable be-
cause they do not take into account the sum p1 + p2 + p3. It is also
the case for reinforcement operators such as the ”triple pi” operator.
Rather, we choose a neutral operator such as the weigthed mean so
as to emphasize the importance of the codes that belong to P com-
pared to P2 or P3. In the next section, we present simulation results.

Discussion on the set D of AR parameters to be considered

A first scenario would be to assume that the clutter can have any
kind of spectrum for a given order p. In that case, D corresponds
to the stability domain. However, this scenario may be too general.

As an alternative, one can take advantage of some a priori
information concerning the clutter. Indeed, using previous clutter
data, we can deduce the estimations of the model order p̂, the AR
parameters {âi}i=1,...,p̂ or equivalently the poles {p̂i}i=1,...,p̂, as
well as the variance of the driving process (by means of the Akaike
or the MDL criteria, the Yule-Walker equations, etc.). Either D is
reduced to {âi}i=1,...,p̂, or, to make the approach more robust, we
can extend D to the set of clutter models defined by the set of AR
parameters corresponding to the set of poles p̂i + ∆p̂i with ∆p̂i

small and taken such that |p̂i + ∆p̂i | < 1 to guarantee the stability.

4. SIMULATIONS: CHOICE OF THE INTRAPULSE
PHASE CODE

For the automatic selection algorithm, we test two sets of weights
for the fuzzy logic operator:

(a) The weighted sum 0.5p1 + 0.3p2 + 0.2p3,

(b) The weighted sum 0.6p1 + 0.3p2 + 0.1p3.

In the following, d(i), i = 0, ..., 2M − 1 denotes the appli-
cant codes that could be considered for the intrapulse phase code.
d(i) is the numerical value of i expressed in the base-2 numeral
system on M bits and where the zeros are replaced by −1, i.e.
d(0) = [−1 − 1 ... − 1 − 1]T , d(1) = [−1 − 1 ... − 1 1]T ,...,
d(2M−1) = [1 1 ... 1 1]T . Due to the symmetry of the function
r(`0, `), d(i) and its opposite d(2M−1−i) yield the same result
hence the simulations are run on 2M−1 codes. For the two scenario,
M = 13, K = 7 and N = 10.
First scenario

In this first simulation protocol, p = 2 and D is the stability
triangle. σ2 = 10−4 and p = 2. The variance σ2

u of the driving
process is chosen so that the autocorrelation function of the AR pro-
cesses taken at the lag 0 is equal to 1.

Both methods (a) and (b) give the same results and the first 3
phase codes are d(128), d(16) and d(512).
Second scenario

Let us consider a set of real clutter data. The estimated model
order is equal to 5. The AR parameters are then deduced from the
estimated correlation function by means of the Yule-Walker equa-
tions. D is then obtained by generating 40 other set of AR param-
eters whose poles are ”close” to the {p̂i}i=1,...,5. The first 3 phase
codes are d(1365), d(1208) and d(3755).

5. CONCLUSIONS AND PERSPECTIVES

In this paper, our purpose is to simultaneously address the optimiza-
tion of the waveform in terms of probability of detection/false alarm
detections, range resolution and range ambiguity. The approach we
propose includes a specific waveform combining an interpulse code
of size K with an intrapulse code of size M and an AR modeling of
the Gaussian clutter. This specific structure may reduce the space of
applicant solutions but has the advantage of addressing the problems
seperately. In addition, from the point of view of the implementa-
tion, this combination is ”simpler”. The waveform optimization we
propose can be done offline so as to avoid having a too-heavy opti-
mization algorithm running on the embedded system.

Among the possible perspectives, we could investigate the case
of a non-Gaussian clutter that could be modeled by a spherically in-
variant random vector (SIRV) the speckle of which could be an AR
process.
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