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ABSTRACT

This paper investigates a new privacy-preserving paradigm for the
task of Query-by-Example Speech Search using Secure Binary Em-
beddings, a hashing method that converts vector data to bit strings
through a combination of random projections followed by banded
quantization. The proposed method allows performing spoken query
search in an encrypted domain, by analyzing ciphered information
computed from the original recordings. Unlike other hashing tech-
niques, the embeddings allow the computation of the distance be-
tween vectors that are close enough, but are not perfect matches.
This paper shows how these hashes can be combined with Dynamic
Time Warping based on posterior derived features to perform secure
speech search. Experiments performed on a sub-set of the Speech-
Dat Portuguese corpus showed that the proposed privacy-preserving
system obtains similar results to its non-private counterpart.

Index Terms— Query-by-Example Speech Search, Dynamic
Time Warping, Secure Binary Embeddings, Data Privacy

1. INTRODUCTION

With the development of data recording and storage capabilities, it
has become possible for many entities, both public and private, at the
individual or corporate level, to store thousands of hours of speech
audio for relatively low costs. Such speech collections may be com-
posed of emergency calls or witnesses testimonies in the case of law
enforcement agencies, business calls between service providers and
their clients, doctors notes taken during medical appointments, ex-
aminations or surgeries, etc. Public entities and private companies
usually store these recordings locally in their own servers, but an in-
dividual person might prefer to store them online, for convenience.
These databases are extremely useful, as they allow for trend analy-
sis and estimation, quality control and several other forms of service
improvement. However, for these speech databases to be useful, it is
necessary to know what is being said by which party.

A typical approach is to have a professional transcriber write
down everything that was said or to run an automatic speech recog-
nition (ASR) system over the database. A simpler, more robust and
less expensive approach that is often employed is to simply search
for specific terms or phrases that relate to specific topics of interest
— inferences may be derived simply from the frequency of occur-
rence of these patterns. One version of this approach that is par-
ticularly relevant is the Query-by-Example Speech Search (QESS)
approach, in which the keyphrase patterns to be searched for are
specified through actual examples.

In all scenarios, however, privacy concerns arise. The data being
mined frequently contain private data. The identity of the speaker is
generally considered private and must not be exposed. Speakers also
often reveal private information, such as account or social security
numbers, demographic information, health information etc., all of
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which are clearly private and must not be accessible to anyone be-
sides the person speaking it and the agency it is addressed to in the
context it is intended to be heard in. Any access to this informa-
tion outside of this setting is clearly unacceptable. In all scenarios,
the identity of the people engaged in the conversations must be kept
hidden, particularly the people who are not employed or similarly
related to the entity storing the recordings.

Yet, when spoken recordings are mined, current technologies
must expose all of the audio, including the private information in
it, to the agency performing the mining, or even a hacker who may
peer into the transactions. Ideally, this information must remain pro-
tected, even when allowing keyword search. This could be achieved,
for instance, through a scheme that enables keyword search by ana-
lyzing ciphered information computed from the original recordings.

This, then, is the problem we address in this paper. We pro-
pose the combination of a QESS technique, namely the Dynamic
Time Warping (DTW), with Secure Binary Embeddings (SBE) [1],
to enable mining of encrypted data. SBE is a hashing technique
that converts vector data to bit strings, through a combination of
random projections followed by banded quantization. It possesses
two interesting properties. First, the bit strings themselves repre-
sent encryptions with information theoretic guarantees of security,
which prevent the recovery of the original data from the bit strings
[1]. Second, it permits the computation of the Euclidean distance
between vectors that are sufficiently close from the Hamming dis-
tance between the corresponding bit strings. The second property
is an important characteristic of SBE hashes from our perspective,
as this way the perfect-match restrictions inherent to other hashing
techniques such as Locality-Sensitive Hashing [2] no longer apply.
Therefore, they are much less dependent on the specific projections
considered, enabling effective classification while retaining privacy.

The overall structure of this paper is as follows. In the next sec-
tion we present an overview on Query-by-Example Speech Search
techniques. Section 3 contains the Secure Binary Embeddings tech-
nique and its security guarantees. In Section 4 we describe our
privacy-preserving query-by-example speech search scheme and we
illustrate its performance with some experiments. Finally, in Section
5 we present some conclusions and directions for future work.

2. QUERY-BY-EXAMPLE SPEECH SEARCH (QESS)

One of the main approaches to mining large amounts of speech
data is search for pre-specified keywords or phrases in it. In many
situations, it is useful, or even necessary, to specify these key
terms through spoken examples, rather than through other means of
representation. In this “query-by-example” scenario, instances of
these key terms in the test data to be mined are discovered through
their acoustic match to the provided spoken examples. Query-by-
Example Speech Search (QESS) is a particularly relevant problem
for low-resource languages, and has recently gained significant re-
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search interest partially due to the success of the Spoken Web Search
(SWS) task at the MediaEval evaluation series [3, 4]. In practice, the
query-by-example task can be considered as a sort of generalization
of the problem of speech search based on text queries. When the
specific queries are known in advance of searching through a speech
corpus, Keyword Spotting (KWS) approaches can be applied. On
the other hand, when the data collection must be processed without
prior knowledge of the queries, the so-called Spoken Term Detection
(STD) task, a more elaborate procedure comprising a first indexing
stage and a second search stage [5, 6] must be employed. The STD
task has received considerable research attention in the recent past,
partially due to the series of evaluations organized by NIST [7, 8, 9].

One common limitation of KWS and STD is that they are
language-dependent. In both cases, conventional approaches rely
somehow on a well-trained automatic speech recognition (ASR) sys-
tem or on a set of phonetic models trained for the particular language
of the speech collection. In well-resourced languages where such
resources are available, even the query-by-example problem can be
converted to KWS or STD: a simple straightforward approach would
consist of an initial speech-to-text conversion of the query, followed
by application of any of the methods used in text-query-based
speech search. However, QESS is more appropriate in situations
where specific acoustic or phonetic models may not be assumed for
the language, such as in low-resource situations. It is also relevant in
other situations, e.g. surveillance tasks or code-switched situations,
where one may be looking for specific terms which are not well
transcribed in the expected language of the corpus. In the particular
case of QESS, some of the most recent approaches are based on
template matching methods, such as different flavors of Dynamic
Time Warping (DTW) of posterior derived features [10, 11]. As an
alternative to the widespread template matching approaches, other
systems use Acoustic Keyword Spotting (AKWS) [12, 13], exploit-
ing in several ways acoustic models in multiple languages. A review
of these and other methods can be found in [3, 4].

The baseline QESS systems considered in this work are based on
DTW template-matching of posterior features provided by different
language-dependent acoustic networks, similar to the ones described
in [10, 11].

2.1. Feature extraction

Feature extraction is based on language-dependent phonetic net-
works that obtain posterior features exploiting multilayer perceptron
(MLP) networks that are part of our in-house hybrid connectionist
ASR systems for European Portuguese (PT), Brazilian Portuguese
(BR), European Spanish (ES) and American English (EN). The
phonetic class posterior probabilities are in fact the result of the
combination of four MLP outputs trained with Perceptual Linear
Prediction features (PLP, 13 static + first derivative), PLP with log-
RelAtive SpecTrAl speech processing features (PLP-RASTA, 13
static + first derivative), Modulation SpectroGram features (MSG,
28 static) and Advanced Font-End from ETSI features (ETSI, 13
static + first and second derivatives). The language-dependent MLP
networks were trained using different amounts of annotated data
[14]. For the PT acoustic models, 57 hours of Broadcast News
(BN) downsampled data and 58 hours of mixed fixed-telephone and
mobile-telephone data were used. The BR models were trained with
around 13 hours of BN downsampled data. The ES networks used
36 hours of BN downsampled data and 21 hours of fixed-telephone
data. The EN system was trained with the HUB-4 96 and HUB-4 97
down-sampled data sets, that contain around 142 hours of TV and
Radio Broadcast data. Each MLP network is characterized by the

size of its input layer that depends on the particular parametrization
and the frame context size (13 for PLP, PLP-RASTA and ETSI; 15
for MSG), the number of units of the two hidden layers (500), and
the size of the output layer. In this case, only monophone units
are modeled, resulting in MLP networks of 39 (38 phonemes + 1
silence) soft-max outputs in the case of PT, 40 for BR (39 phonemes
+ 1 silence), 30 for ES (29 phonemes + 1 silence) and 41 for EN
(40 phonemes + 1 silence). Low-energy frames detected with the
alignment generated by a simple bi-Gaussian model of the log en-
ergy distribution computed for each speech segment are removed.
Finally, unit-length normalization is applied to the posteriors.

2.2. Dynamic Time Warping (DTW)

DTW is a time series alignment algorithm developed originally for
speech recognition, which aims at aligning two sequences of feature
vectors by warping the time axis iteratively until an optimal match
between them is found. The two sequences can be arranged on the
sides of a grid, one on the top and the other on the left hand side.
Inside each cell a distance metric is computed, comparing the cor-
responding elements of the two sequences. For obtaining the best
alignment between these two sequences, it is necessary to find a
path through the grid that minimizes the total distance between them.
This involves finding all possible paths through the grid and for each
of them computing the overall accumulated distance, which corre-
sponds to the minimum of the sum of the distances between the in-
dividual elements on the path divided by the sum of a weighting
function. A common weighting function is the length of the path be-
ing analyzed. In order to force the optimal path to have an acceptable
shape, several optimizations and constraints are usually used, such as
monotonicity, continuity, maximum/minimum slope steepness, etc.

In our implementation of the DTW algorithm, we use a kernel
that allows for the possible paths to advance only one cell at a time,
either to the right, diagonally or down, thus enforcing monotonicity
and continuity. Instead of using a sliding window approach for spot-
ting a specific query in a long collection file sequence, we allow for
the alignment between the query sequence and the long sequence to
start and end at any arbitrary position of the long sequence. To do
this, we impose some conditions to the computation of the best path
length-normalized accumulated distances and we store all possible
paths and the corresponding accumulated distance matrices. When
the last cell is analyzed, we perform a backward step to find the mini-
mum distance crossing path and the starting and ending frame of the
query-term searched. More details of this process can be found in
[11]. In this work, we produce a single score for each pair query-file
corresponding to the negative length-normalized accumulated dis-
tance of the best crossing path match, given by

" A(KW, TS, p)

Score(KW, T'S, p) = min length(p)

PEP £ M
where K'W are the frames corresponding to the target keyword, T'S
are frames corresponding to the target sentence, p is a possible path
for aligning KW and T'S, and d(KW, TS, p) is the distance be-
tween K'W and T'S along path p. Thus, the speech search task here
considered is spoken document retrieval, rather than query detec-
tion. Finally, we also apply a per-query zero-mean and unit-variance
normalization (q-norm) to the detection scores.

3. SECURE BINARY EMBEDDINGS (SBE)

A secure binary embedding (SBE) is a scheme for converting real-
valued vectors into bit sequences using band-quantized random pro-
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jections. These bit sequences, which we will refer to as hashes, pos-
sess an interesting property: if the Euclidean distance between two
vectors is lower than a threshold, then the Hamming distance be-
tween their corresponding hashes is proportional to the Euclidean
distance between the vectors; if it is higher, then the hashes provide
no information about the true distance between the two vectors. This
scheme relies on the concept of Universal Quantization [15], which
redefines scalar quantization by forcing the quantization function to
have non-contiguous quantization regions.

Given an L-dimensional vector x € R, the universal quantiza-
tion process converts it to an M -bit binary sequence, where the m-th
bit is given by

gm(x) = O (W) @
Here (, ) represents a dot product. a,, € R’ is a projection vec-
tor comprising L i.i.d. samples drawn from NV (1 = 0,0%), Ais a
precision parameter, and w, is a random dither drawn from a uni-
form distribution over [0, A]. Q(-) is a quantization function given
by Q(x) = |« mod 2]. We can represent the complete quantization
into M bits compactly in vector form:

a(x) =Q (A7 (Ax +w)) 3)

where q(x) is an M-bit binary vector, which we will refer to as the
hash of x. A € RM*L is a matrix composed of the row vectors
am, A is a diagonal matrix with entries A, and w € RM is a vector
composed from the dither values w,.

The universal 1-bit quantizer of Equation 2 maps the real line
onto 1/0 in a banded manner, where each band is A, wide. Figure
1 compares conventional scalar 1-bit quantization (left panel) with
the equivalent universal 1-bit quantization (right panel).

Fig. 1. 1-bit quantization functions.

The binary hash generated by the Universal Quantizer of Equa-
tion 3 has the following properties [1]: the probability that the *"
bits, g;(x) and ¢; (x") respectively, of hashes of two vectors x and x’
are identical depends only on the Euclidean distance d = ||x — x/||
between the vectors and not on their actual values. As a conse-
quence, the following relationship can be shown [1]: given any
two vectors x and x” with a Euclidean distance d, with probabil-
ity at most e~2M {he normalized (per-bit) Hamming distance
dr(q(x), q(x’)) between the hashes of x and x’ is bounded by:

1 1 _(xga)? po 14 (xga)?
53¢ (\/5&) —tgdH(q(x),q(x))gi—ﬁe (ﬁﬁ) +1

where t is the control factor. The above bound means that the Ham-
ming distance dg(q(x),q(x’)) is correlated to the Euclidean dis-
tance d between the two vectors, if d is lower than a threshold (which
depends on A). Specifically, for small d, E[dm(q(x),q(x"))],
the expected Hamming distance, can be shown to be bounded
from above by v2r—1oA~'d, which is linear in d. However,
if the distance between x and x’ is higher than this threshold,
du(q(x),q(x’)) is bounded by 0.5—47*exp (—0.57% 0 A™2d?),
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Fig. 2. SBE behavior as a function of A, for two values of M.

which rapidly converges to 0.5 and effectively gives us no informa-
tion whatsoever about the true distance between x and x'.

In order to illustrate how this scheme works, we randomly
generated 1 million pairs of vectors in a high-dimensional space
(L = 1024) and plotted the normalized Hamming distance between
their hashes against the Euclidean distance between them (Figure
2). The number of bits in the hash is also shown in the figures. In
all cases, once the normalized distance exceeds A, the Hamming
distance between the hashes of two vectors ceases to provide any
information about the true distance between the vectors. Changing
the value of the precision parameter A allows us to adjust the dis-
tance threshold until which the Hamming distance is informative.
Increasing the number of bits M leads to a reduction of the variance
of the Hamming distance. A converse property of the embeddings
is that for all x” except those that lie within a small radius of any
x, dr(q(x), q(x’)) provides little information about how close x’
is to x. It can be shown that the embedding provides information
theoretic security beyond this radius, if the embedding parameters
A and w are unknown to the potential eavesdropper. Any algorithm
attempting to recover a signal x from its embedding q(x) or to infer
anything about the relationship between two signals sufficiently far
apart using only their embeddings will fail to do so.

4. QUERY-BY-EXAMPLE SPEECH SEARCH USING
SECURE BINARY EMBEDDINGS

The application of the SBE to a Query-by-Example Speech Search
is straightforward: instead of evaluating the DTW algorithm using
a distance metric appropriate for original arrays of features, the nor-
malized Hamming distance between the corresponding SBE hashes
is used, therefore hiding any relevant information from the party
computing the algorithm.

The implementation of a privacy-preserving Query-by-Example
Speech Search system is as follows: a party that possesses a collec-
tion of audio recordings which contain sensitive or otherwise private
information extracts features from the audio, computes the corre-
sponding SBE hashes, and stores them in a free, public-access data-
center. Later, when it is necessary to recover recordings containing
a specific keyphrase, that party records one (or many) utterances of
that keyphrase, extracts features from it, computes the correspond-
ing SBE hashes with the same parameters A, w and A that were
used before and performs the DTW algorithm over the entire collec-
tion. The only additional change is replacing the cosine or Euclidean
distance with the normalized Hamming distance in Equation 1.

In this work, all the results are presented in terms of Maximum
Term Weighted Value (MTWYV) and DET curves, that are commonly
used in NIST STD evaluations [7]. In this work we use a prior that
approximately fits the empirical prior (Piqrger = 0.01) and two
more suitable false alarm and miss error costs to our application sce-
nario (Cyq = 1 and Cyiss = 100). The corresponding 3 is 0.99.
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ajuda enviar menu saudacdo
alterar fim operador  seguinte
anterior gravar ouvir stop
apagar guardar  programar telefonar
cancelar ligar rechamar tocar
conferéncia lista repetir transferir
continuar marcar sair

Table 1. List of selected keywords.

Posteriors
PT BR ES EN ALL
cosine 0.812 0.538 0.645 0.428 | 0.789
Euclidean | 0.800 0.525 0.635 0.395 | 0.774

Table 2. QESS results, MTWYV for baseline features.

4.1. Experiments using DTW

As a proof of concept, we ran experiments on a sub-set of the
SpeechDat Portuguese corpus [16]. We selected 27 different key-
words, shown in Table 1, from the SpeechDat application words list.
The evaluation set are 481 utterances from one of the data categories
of the Portuguese SpeechDat II corpora consisting of word spotting
phrases using embedded application words. Most of the utterances
contain only one application word (83.8%), but some utterances
have zero (1.5%), two (12.0%) or three keywords (2.7%).

For each audio file, we extracted four sets of features: posteriors
for European Portuguese (PT), Brazilian Portuguese (BR), European
Spanish (ES) and American English (EN). The posteriors were ex-
tracted according to the procedure described in Section 2.1.

In our baseline experiments, without using SBE hashes, we eval-
uated all these sets of features separately but we also tried to perform
a combination of all the posterior features for different languages at
the distance matrices level, as this is known to improve results in
some situations [17]. The results we obtained are presented in Table
2. Each row contains the results obtained when two different dis-
tance metrics are considered when performing the DTW algorithm.
The cosine distance was used because it is the one that best adapts to
the posterior features and the Euclidean distance was used because
it is the one that best adapts to the SBE hashing scheme. Since all
recordings contain speech from native European Portuguese speak-
ers, it could be expected that the posterior-PT features provide the
best results. The experiments considering all the posterior features at
the same time did not improve the results obtained for the posterior-
PT features, possibly because the results for the remaining language-
dependent posteriors are rather worse in comparison.

4.2. Experiments using SBE hashes

There are two parameters that control the behavior of the Secure
Binary Embeddings hashes: the quantization step size A and the
number of bits M. The value of M by itself is not a useful num-
ber, as different values of L (dimensionality of the feature vectors)
require different values of M ; hence we report our results as a func-
tion of bits per coefficient (bpc), computed as M /L. The bpc al-
lows us to govern the variance of the universal quantizer. Leakage in
this context refers to the fraction of utterances containing the target
keywords whose SBE hashes have a normalized Hamming distance
below the threshold at which Hamming distance d g is proportional
to the Euclidean distance d with respect to any utterance in which
we want to detect keywords. This threshold was empirically set at
0.475. The amount of leakage is exclusively controlled by A. Since

leakage | ~5% ~25% ~50% ~75% ~ 95%
bpc=2 - - 0.776 0.776 0.782
bpc=4 - 0.731 0.798 0.790 0.787
bpc=8 - 0.784 0.744 0.794 0.784
bpc=16 - 0.800 0.799 0.798 0.797

Table 3. QESS results, MTWYV for SBE hashes of posteriors-PT.

8O-+

| |=—PT cosine
+ PT cosine - MTWV

z | |=—PT Euclidean

o5k * PT Euclidean - MTWV
02k PT SBE

0.1r| * PT SBE - MTWV

Miss probability (in %)

0.601 O.bl d.D‘.Zdj‘l ‘2 ‘5 iO IZO ‘4-0
False Alarm probability (in %)
Fig. 3. DET curves for the baseline and best SBE hashes results.

the best baseline results were obtained for the posterior-PT features,
we only analyzed them in experiments considering the SBE hashes.
The results obtained are presented in Table 3.

As expected, increasing the value of A (and therefore increas-
ing the amount of hashes that reveal information regarding the Eu-
clidean distance between the original feature vectors) leads to better
keyword detection results, specially when lower values of bpc are
considered. Surprisingly, increasing the value of bpc does not lead
to better keyword detection results. A possible reason for this may
be that there is a clear separation between most of the utterances
with and without a target keyword, which would mean that they are
only slightly affected by the noise introduced when computing the
SBE hashes. An interesting result is that the observed degradation
when the SBE hashes are considered comes almost exclusively from
the fact the SBE hashes relate to the Euclidean distance between the
original vectors, and therefore they are very promising for obtaining
privacy-preserving techniques for other speech processing tasks.

For the sake of completion, we present in Figure 3 the DET
curves for the baselines using the cosine and Euclidean distances,
as well as the best results using SBE hashes (bpc=16, 25% leakage).

5. CONCLUSIONS AND FUTURE WORK

The paper described a privacy-preserving query-by-example speech
search system which yields similar results to the non-private coun-
terpart. Our approach allows for searching audio databases for sen-
tences containing specific keyphrases without the risks of disclosing
personal or sensitive information. We are currently not only evaluat-
ing ways to extend the proposed work to use other forms of embed-
dings, but also analyzing mechanisms for more secure embeddings,
as well as formally proving the non-invertibility of SBEs.
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