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ABSTRACT 

 
This paper presents the latest improvements on our Spectro system 
that detects transformed duplicate audio content. We propose a 
new binary image feature derived from a spectrogram matrix by 
using a threshold based on the average of the spectral values. We 
quantize this binary image by applying a tile of fixed size and 
computing the sum of each small square in the tile. Fingerprints of 
each binary image encode the positions of the selected tiles. 
Evaluation on TRECVID 2010 CBCD data shows that this new 
feature improves significantly the Spectro system for 
transformations that add irrelevant speech to the audio. Compared 
to a state-of-the-art audio fingerprinting system, the proposed 
method reduces the minimal Normalized Detection Cost Rate (min 
NDCR) by 33%, improves localization accuracy by 28% and 
results in 40% fewer missed queries. 
 

Index Terms— Content-based copy detection, audio 
fingerprints, spectrogram, TRECVID 
 

1. INTRODUCTION 
 
Content-based copy detection (CBCD) is a task with growing 
interest in academic and industrial fields. It provides the ability to 
identify duplicate audio content without the need to insert external 
information to the audio like watermarking techniques [1]. The 
idea behind CBCD is that the content itself contains enough unique 
information to detect copies. Audio copy detection has shown great 
value in a wide variety of applications including music 
identification, copyright control, broadcast monitoring and music 
library organization. Although some progress has been made in the 
last decade, it is still a challenging task. Audio signals subjected to 
a variety of distortions make audio copy detection difficult. 

Many different audio features for CBCD have been used in 
the past. In a well known method [2], a binary fingerprint of 32 bits 
encodes the energy differences along the frequency and the time 
axes. The search uses a lookup table, allowing a very fast search. 
These fingerprints have been used in several other papers [3, 4, 5]. 
In [6], 12 Mel-Frequency Cepstral Coefficients (MFCCs) plus 
energy and its delta coefficients are used as audio features. A 
nearest neighbor search between the reference frames and query 
frames achieved good results in very difficult evaluation 
conditions. A copy detection system proposed in [7] achieved 
excellent performance in TRECVID 2010 and 2011 audio+video 
copy detection tasks. For the audio part, they used Weighted Audio 
Spectrum Flatness (WASF) features introduced in [8]. In [9], audio 
features are computed from 64 filter bank values, and made more 
discriminative by concatenating features for 3 successive frames. 

In another related work, music identification is transformed 
into computer vision problem [10]. Local regions of the 
spectrogram image are transformed into a set of 32 bit vectors, and 
a classical hash table is used to perform the search. In [11], Haar 
wavelets are computed from spectrogram image and only wavelets 
with the largest magnitude are selected. Scale Invariant Feature 
Transform (SIFT) image descriptors are used in [12] to treat time 
scale modification and pitch shifting problem.  

In more recent work, local spectral energies around salient 
points chosen from the maxima in the Mel-filtered spectra are 
selected [13]. Regions around each selected point are encoded to 
generate binary fingerprints. Compared to [2], this approach 
improved significantly the detection accuracy. The idea of 
constructing fingerprints based on spectrogram peaks has been 
used before in the Shazam system [14], where several time-
frequency points are chosen from the spectrogram. A point is 
selected if it has higher energy than all its neighbors in a region 
centered on the point. Compact signatures representing peak pairs 
are then generated to form fingerprint hashes.  

In this paper, we have improved the Spectro system 
introduced in [15, 16]. We propose a new feature extraction 
scheme of binary images. These images are obtained by converting 
the audio signal into binary spectrogram matrix based on a spectral 
energy threshold. We quantize this binary image by applying a tile, 
and transform each quantized image into an n-dimensional vector 
containing the positions of salient regions (or tiles) of the 
quantized image. This approach differs from methods like MASK 
[13] or Shazam [14] where salient points are selected directly from 
the spectrogram. In our work, features are extracted from the 
binary image that describes the shape of the signal after noise 
suppression and elimination of signal amplitude. Resulting images 
are robust to audio distortions. We reduce search time by 
quantizing the binary image and selecting the most relevant 
regions. We believe that salient regions are more robust than 
salient points, especially for transformations that add irrelevant 
speech to the signal. Different regions of the binary image are less 
likely to be distorted than different points in the spectrogram. We 
evaluate this method on TRECVID 2010 CBCD data, and we show 
that this new feature reduces min NDCR. The proposed method 
outperforms a state-of-the-art audio fingerprinting system [6] in 
terms of min NDCR, number of missed queries, F-measure and run 
time.  

 
2. THE SPECTRO SYSTEM 

 
In this Section, we describe our Spectro system in some detail, and 
then describe the improvements related to this paper in Sec. 3. The 
Spectro system transforms the audio signal into a time-frequency 
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representation. We convert the resulting spectrogram into a 
sequence of 2-D binary images and represent each image by an n-
dimensional vector. We generate different versions of fingerprints 
by using different thresholds based on the average of the spectral 
values (in this work we need only one version). We create query 
fingerprints in the same way as reference fingerprints. However, 
we produce query fingerprints that have been speeded up or slowed 
down by 9% to reduce speed difference between queries and 
references. Finally, we perform nearest neighbor search between 
the query and reference fingerprints. In this section the Spectro 
system is briefly presented. More details can be found in [15,16].  
 
Spectrogram generation: We transform the audio signal into a 
spectrogram matrix containing the intensity of the signal at any 
given time and frequency: We first down sample input audio to 8 
KHz, apply Hamming window of length 96 ms, and then generate 
a spectrogram by computing the short time Fourier transform in 
this 96 ms window. We reduce this spectrogram to 257 frequency 
bins in the range of 500 Hz to 3000 Hz.  We compute these 257 
frequency bins every 3 ms.  
 
Binary image generation: The resulting spectrogram matrix is 
divided into overlapping windows of size 257 x 333 (i.e. 1-sec 
window length) every 24 ms. We compute the mean intensity value 
of this 1-sec spectrogram matrix. Then, we replace the intensity 
values of this matrix by either 0 or 1 using this strategy: if the 
intensity is greater than the mean then we replace it by 1, otherwise 
we replace it by 0. We generate different versions of this binary 
image from the same spectrogram matrix by using different 
thresholds (e.g. 0.4 x mean, 0.6 x mean). 
 
Fingerprint representation: We convert each binary image into 
an n-dimensional vector as discussed in Sec. 3. This vector is the 
compact fingerprint of the 257x333 binary spectrogram matrix.  
 
Fingerprint matching: During retrieval, we first label each 
reference frame by the number of its closest query frame. To find 
the closest query frame, we use nearest neighbor algorithm with 
Manhattan distance as a measure of similarity. After the closest 
query frame has been found for each reference frame, the total 
number of fingerprints that match the query frame-synchronously 
is computed: We move the query over the reference. For each 
alignment, we count the number of reference fingerprints that 
match exactly query frame number (see Figure 1).  
 

 

Fig. 1. Fingerprint matching. 

 
Our algorithm differs from [6] as follows: with each reference 

frame, we take N frames before and after the closest frame. For 
example, in Figure 1 (SCF-1: successive closest frames with N=1), 

the closest query frame to the fifth test frame is frame 2. We 
update the count for not only query frame 2, but also for frames 1 
and 3. This reduces the matching error due to a large overlap 
between frames that generates similar fingerprints for successive 
frames. For example, if the correct closest query frame to the 
reference frame is frame n, then the nearest neighbor matching 
algorithm may wrongfully label frame n-1 as its closest frame 
since query frames n and n-1 are similar due to the large overlap 
(24 ms frame advance and 1 sec window). We discuss in detail the 
influence of the parameter SCF in section 4. To accelerate this 
search; we use a parallel implementation of the nearest-neighbor 
algorithm on a Graphics Processing Unit (GPU). 

 
3. FEATURE AND SEARCH ENHANCEMENTS 

 
3.1. Improvements to binary image feature extraction 
 
In the baseline version of Spectro system described above, a 
fingerprint is a 48-dimensional vector obtained by dividing the 
binary image into 24 horizontal slices and 24 vertical slices. We 
then take the sum of each slice to obtain a vector of 48 dimensions 
[15, 16]. In this section we describe a new fingerprint 
representation scheme that is more robust to audio degradations.  

In [15, 16] we showed that increasing the dimensionality of 
the n-dimensional vector (where n is 48 above) reduces min 
NDCR. As we increase the number of dimensions we add more 
information about the localization of salient points in the binary 
image. To improve this representation, instead of using horizontal 
and vertical slices, we divide the binary image into small square 
tiles of a fixed size, so each element of the n-dimensional vector is 
the sum of a small square. This strategy results in a more accurate 
representation of the image. In the previous image representation 
[16], we processed each region of the image twice (one to compute 
the vertical slice and one for the horizontal slice). In this scenario, 
if a noise was introduced in the image, then two elements of the n-
dimensional vector were affected. Here, only one element of the 
tile-based representation is affected. Secondly, when using 
horizontal and vertical slices, an image can be divided into a 
maximum of 590 slices (257 horizontal slices + 333 vertical slices) 
compared to 85581 (257 x 333) regions with tile-based 
representation (when using 1 x 1 tile). 

 
Fig. 2.   Improved binary image feature extraction. 
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In this work we use a tile of size 10 x 10, which results in 745 
tiles. However, a 745 dimensional vector is very large, increasing 
considerably the search processing time. Therefore, we select only 
a few salient tiles and discard the rest of the image. We select N 
tiles that represent the highest values. To encode the fingerprint, 
we keep only the position of the selected tile and eliminate its 
value. In other words, we divide the image into 745 tiles and we 
compute the sum in each tile. We number each tile of the image 
from 1 to 745, and then we look for the N tiles that have the 
highest values. The fingerprint represents the positions of these N 
tiles. Fig. 2 shows an illustration of this binary image feature 
extraction step.  

 
3.2. Search algorithm 
 
To search for a test segment that matches the query we perform a 
nearest neighbor search as described in section 2. Since the new 
fingerprint encodes positions of salient tiles in the binary image, 
the similarity between two fingerprints is equal to the number of 
positions that coincide instead of a Manhattan distance. This is 
equivalent to determining the intersection between query and test 
fingerprint elements. Finding this intersection set has a time 
complexity of O(n2). Pairwise comparison has a linear complexity, 
but in this case we must use all the 745 positions to perform 
pairwise operations. Since we perform the search algorithm on a 
GPU, transferring 745-dimensional fingerprints from CPU to GPU 
is time consuming. To reduce this transfer time, we transfer query 
and test fingerprints that encode only the positions of salient 
regions (N values with N << 745) from CPU to GPU, and then 
reorganize the fingerprints into a 745 dimensional vector once on 
GPU as illustrated in Fig. 3. In this figure, test fingerprint elements 
(i.e. positions of salient tiles) have a value of 1 when represented 
on the GPU by 16-dimensional vector as an example. Such a 
representation is appropriate for fast parallel calculation on the 
GPU in order to run in linear time. 
 

 

 
Fig.  3. Fingerprint similarity computation on the GPU. 

 
4. EXPERIMENTS 

 
In this section, we evaluate the performance of the proposed 
method using the TRECVID 2010 audio copy detection dataset. 
We first present results of Spectro system using this new binary 
image feature that we will call Salient-Regions (SR). We study the 
impact of the number of successive closest frames (SCF) and the 
number of dimensions on min NDCR. We also compare results 
given by SR feature to the best results achieved by Spectro system 
using both Global and Local Means [15, 16]. Finally, we compare 
our system to a state-of-the-art NN-based system proposed in [6, 
17]. This system achieved the best audio copy detection results 
compared to all participated in TRECVID 2009 (see TRECVID 
2009 proceedings).  

4.1. Datasets 
 
The TRECVID 2010 CBCD data provided by NIST [18] consists 
of a reference collection of more than 11000 videos for a total of 
400 hours of videos. There are 201 original audio queries, each 
query altered with 7 different transformations for a total of 1407 
transformed queries. These transformations are: (T1) nothing, (T2) 
mp3 compression, (T3) mp3 compression and multiband 
companding, (T4) bandwidth limit and single band companding, 
(T5) mix with speech, (T6) mix with speech, then multiband 
compress, (T7) bandpass filter, mix with speech and compress.  

When we examined this dataset we found other audio 
transformations not mentioned by NIST. For example, many 
queries are distorted by replacing some part of the signal by small 
silent segments at different places (e.g. query 3353 and 3771). In 
addition, some queries have undergone speed modification; either 
by speeding up or slowing down the query (e.g. query 3030, 4245 
and 3857). Many reference audio files in this dataset have 
duplicates that skew the results. Therefore, we have removed these 
duplicate files. 

 
4.2. Evaluation metrics 

 
To evaluate the accuracy of locating a copied fragment within a 
video, we use F-measure that is defined as the harmonic mean of 
precision and recall. We use min NDCR to evaluate the copy 
detection effectiveness. NDCR is a weighted cost combination of 
the probability of missing a true copy and the false alarm rate. In 
the TRECVID evaluation, different parameters are defined for the 
“balanced” and “no false alarm” (NOFA) profiles. In NOFA 
profile, which is the more difficult, the cost of an individual false 
alarm is 1000 times the cost of an individual missed query, while 
in the balanced profile they both have a cost of 1. We report results 
here using the NOFA profile. 
 
4.3. Experimental results 

 
4.3.1. Results with the new feature 

In order to reduce run time, we generated only one version of 
SR fingerprints with a threshold equal to the spectral mean, 
compared to four versions generated in our previous work with 
Global Mean and Local Mean. Table 1 shows min NDCR for 
Salient-Regions feature averaged over all 7 audio transformations 
using varying SCF values. As expected, min NDCR decreases with 
increasing dimensions. However, unlike our previous experiments 
with Global Mean and Local Mean, best results are achieved with 
SCF-0. The new feature seems to better represent the binary image 
and generates different fingerprints for successive frame, reducing 
the impact of similar successive frame problem.  

Table 1. Min NDCR for SR features averaged over all 
transformations with varying SCF values. 

Dimensions SCF-0 SCF-1 SCF-3 
12 0.149 0.145 0.149 
24 0.135 0.136 0.143 
44 0.129 0.129 0.132 

 
Table 2 compares the best results given by Salient-Regions 

(SR), Global Mean (GM) and Local Mean (LM) features. From 
this table we can see that Salient-Regions with 44 dimensions (SR-
44) outperforms both feature parameters and decreases min NDCR 
averaged over all transformations by 29% compared to Global 
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Mean and 42% compared to Local Mean. Although the lower min 
NDCR averaged over all transformations is given by SR-44, SR-12 
and SR-24 also give good results and lower min NDCR compared 
to Local Mean and Global Mean. However, the lowest min NDCR 
for T1 and T2 transformations is achieved with the Global Mean 
features. Global Mean gives good results for transformations that 
do not add irrelevant speech to the query. However, its 
performance degrades for transformations that add irrelevant 
speech (T5, T6 and T7). Salient-Regions feature reduces the 
impact of adding irrelevant speech to the queries and achieves 
results comparable to those transformations that do not add 
irrelevant speech. 

 
Table 2. Min NDCR for SR feature with varying dimensions 

compared to Global Mean and Local Mean features. 

Feature T1 T2 T3 T4 T5 T6 T7 Average 
SR-12 0.104 0.112 0.149 0.112 0.179 0.187 0.201 0.149 
SR-24 0.09 0.104 0.134 0.097 0.172 0.172 0.179 0.135 
SR-44 0.09 0.09 0.112 0.097 0.172 0.157 0.187 0.129 
GM 0.075 0.075 0.179 0.127 0.201 0.343 0.269 0.181 
LM 0.149 0.179 0.209 0.157 0.284 0.313 0.276 0.224 

 
4.3.2. Spectro versus NN-based  
Table 3 compares min NDCR of our Spectro system (SR-44 and 
SCF-0), with the NN-based system introduced in [6]. The 
comparison shows that our system significantly outperforms NN-
based system for all transformations. In fact, the Spectro system 
lowers min NDCR averaged over all transformations from 0.193 to 
0.129, which is a relative improvement of 33%.  
 
Table 3. Comparison of min NDCR for Spectro (SR-44) and NN-

Based systems. 

 
Similarly, Spectro reduces the number of missed queries for 

all transformations and results in 69 fewer missed queries, a 
reduction of 40% (see Table 4). 

 
Table 4. Comparison of the number of missed queries for Spectro 

and NN-Based systems 

 
Finally, the F1-measure for locating a query within a 

reference for Spectro and NN-based systems are compared in 
Table 5. We notice that Spectro outperforms NN-based system for 
all transformations. Our system improved F-measure by 28% 
relative to NN-based system. 

 
Table 5. Comparison of F-measure for Spectro versus NN-Based 

systems. 

4.3.1. Run time 
Running times in secs/query for each audio transformation and for 
SR-12, SR-24, SR-44 and NN-based fingerprints are shows in 
Figure 4. This figure shows that SR-12 is the fastest followed by 
NN-based features with a small difference. We notice that the 
running time increases as the numbers of dimensions increase but 
not proportionately. For example, running time is multiplied by a 
factor of 16 when using SR-44 instead of SR-12, even though the 
number of dimensions is only 4 times greater. This anomaly is 
related to the software implementation of the search algorithm on 
the GPU, and is primarily due to memory limitations that lead to 
this drastic increase in running time. However, even with SR-12, 
Spectro reduces min NDCR averaged over all transformations by 
23% compared to the NN-based system.  
 

 
Fig.  4. Runtime in seconds/query for different systems. 

 
5. Conclusion 

 
We have presented latest enhancements of our spectrogram-based 
audio fingerprinting system. Specifically, we describe a new binary 
image feature extraction scheme that is highly robust to audio 
distortions. These images are obtained from a spectrogram matrix 
of the audio signal using a threshold based on the average of the 
spectral values. Fingerprints encode the positions of salient regions 
of the quantized binary image. We evaluate this method on 
TRECVID 2010 CBCD data, and we present results with varying 
dimension (12, 24 and 44 salient regions) and with varying SCF 
(successive closest frame) values. We show that this new feature is 
a better representation of the binary image and it solves the 
successive closest frame problem. The proposed method reduced 
min NDCR achieved by Spectro system using Global Mean and 
Local Mean features by 29% and 42%, respectively. Compared to 
a state-of-the-art nearest neighbor audio fingerprint system, 
Spectro reduced min NDCR (averaged over all audio 
transformations) by 33%, reduced the total number of missed 
queries by 40% and improved localization accuracy by 28% (when 
using 44 dimensions). Finally, we showed that SR-12 (with 12 
dimensions) is a good trade-off between detection performance and 
run time. SR-12 gives 23% lower min NDCR compared to the NN-
Based system, and is slightly faster. 
 
 
 

System T1 T2 T3 T4 T5 T6 T7 Average 
Spectro 0.09 0.09 0.112 0.097 0.172 0.157 0.187 0.129 

NN-Based 0.179 0.187 0.194 0.187 0.201 0.194 0.209 0.193 

System T1 T2 T3 T4 T5 T6 T7 Total 
Spectro 10 10 11 12 21 20 20 104 

NN-Based 22 25 25 24 25 24 28 173 

System T1 T2 T3 T4 T5 T6 T7 Average 
Spectro 0.869 0.885 0.889 0.9 0.896 0.891 0.867 0.885 

NN-Based 0.685 0.695 0.701 0.691 0.685 0.691 0.703 0.693 
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