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ABSTRACT 

 
Source recording device recognition is an important emerging 
research field of digital media forensic. Most of the prior literature 
focus on the recording device identification problem. In this study 
we propose a source cell phone verification scheme based on 
sparse representation. We employed Gaussian supervectors (GSVs) 
based on Mel-frequency cepstral coefficients (MFCCs) extracted 
from the speech recordings to characterize the intrinsic fingerprint 
of the cell phone. For the sparse representation, both exemplar 
based dictionary and dictionary learned by K-SVD algorithm were 
examined to this problem. Evaluation experiments were conducted 
on a corpus consists of speech recording recorded by 14 cell 
phones. The achieved equal error rate (EER) demonstrated the 
feasibility of the proposed scheme. 
 

Index Terms— Digital audio forensic, Source cell phone 
verification, Gaussian supervector, Sparse representation. 
 

1. INTRODUCTION 
 
Reliable recognition of the source device used to acquire a 
particular speech recording would prove useful in the court for 
establishing the origin of speech recordings presented as evidence 
[1, 2]. Source recording device recognition is motivated by the 
hypothesis that recording device leave behind its intrinsic 
fingerprint traces in the speech recording [3]. 

Over the past several years, source recording device 
recognition has received more attention. Most existing literature 
related to this problem focus on microphone identification [4-9], 
telephone handset identification [3, 10-15] and cell phone 
identification [15-20]. In particular, source cell phone recognition 
from speech recordings was first pointed out by Hanilçi et al. [17]. 
The authors proposed to identify 14 cell phones from speech 
recordings using Mel-frequency cepstral coefficients (MFCCs) and 
support vector machine (SVM). In our recent work [19], a cell 
phone identification system based on the Gaussian mixture model-
universal background model (GMM-UBM) and MFCCs was 
presented. Kotropoulos et al. presented several studies on the 
telephone handset identification [12-15] and more recently also on 
cell phones identification [15, 16]. 

However, most existing studies focus on the source recording 
device identification (or classification) problem, more specifically, 
the close-set source recording device identification problem. To 
our best knowledge, few studies have focused on the source 

recording device verification problem except that, in a very recent 
work, a cell phone detection experiment was conducted in [18] 
based on SVM. Given a speech recording and a claimed recording 
device, e.g., cell phone, the task of recording device verification is 
to determine if the speech recording was acquired by the claimed 
device. This problem is full of significance in the forensic context. 
Take cell phone as an example, we know that cell phone has 
become an essential part of our daily life and almost every phone is 
equipped with the function of voice recording. In the forensic 
context, the wide availability of cell phones will signify that there 
will be increasing more recording evidences in the form of cell 
phone recordings brought to the courts or other law enforcement 
agencies. Imagine that a person submits a speech recording to the 
court as evidence and claims that this recording was recorded using 
his cell phone. Obviously, source cell phone verification from 
speech recording will aid in justifying the authenticity of this 
evidence. 

Motivated by the forensic significance of source cell phone 
verification, partially inspired by the success of sparse 
representation based speaker verification systems [21-23], in this 
study, we propose the use of sparse representation for source cell 
phone verification task. Both the exemplar based dictionary and 
the learned dictionary are examined. Gaussian supervectors (GSVs) 
computed from speech recordings have shown to successively 
represent the intrinsic fingerprint of the recording device [3]. Thus, 
GSVs are utilized here to construct (or learn) the dictionary. The 
effects of GMM mean supervector and GMM mean shift 
supervector to this problem are compared. The performance of the 
two kinds of dictionaries and various scoring metrics are evaluated 
and compared on a 14 cell phones verification task. 

The remainder of this paper is organized as follows: Section 2 
describes the methods of this study. Section 3 details the 
experimental set up in this paper. The experimental results and 
discussion are presented in Section 4. Finally, conclusions and 
future works are summarized in Section 5. 
 

2. METHODS 
 
2.1. Gaussian supervector 
The intrinsic fingerprint of the recording device can be effectively 
represented by the GSVs computed from speech recordings 
acquired with the device [3]. In this way, given the training data 

1{ }T
t tX x == from an utterance and a diagonal covariance UBM with 

K mixtures given by 1{ , , }K
UBM i i i iλ ω µ == Σ , the means adapted only 

GMM is updated from The UBM by maximum a posteriori (MAP)  
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Fig. 1. Block diagram of source cell phone verification system based on sparse representation when (a) exemplar based dictionary is 
utilized，or (b) learned dictionary is utilized. 

 
[24, 25]. Suppose that 1{ , , }a K

a i i i iλ ω µ == Σ  and 1{ , , }b K
b i i i iλ ω µ == Σ  

are the means adapted GMMs for two utterances. The Kullback-
Leibler (KL) divergence kernel is then defined as the 
corresponding inner product of the GMM mean supervector which 
is a concatenation of the weighted GMM mean vectors (For the 

thi mean vector, the weight is (1/ 2)
i iw −Σ ) [26]: 

(1/ 2) (1/ 2)

1
( , ) ( ) ( ).

K
a T b

a b i i i i i i
i

K w wλ λ µ µ− −

=

= Σ Σ∑              (1) 

The GMM mean shift supervector [27] for an utterance is 
defined as  

y = s – m                                          (2) 
where s is the GMM mean supervector and m is the device 
independent UBM mean supervector. 
 
2.2. Source cell phone verification based on exemplar 
dictionary 
In a verification test, for a claimed device, select 1N  object 
examples from claimed device and 2N  non-target background 
examples ( 1 2N N ) as in Figure 1(a). Thus, the exemplar based 
dictionary [21, 22, 28] is defined by concatenating the examples as 

 

1 21 2 11 12 1 21 22 2[ ] [ , , , , , , , ] M N
N ND D D a a a a a a ×= = ∈        (3) 

here 1 2

1 21 11 12 1 2 21 22 2[ , , , ] , [ , , , ] ,M N M N
N ND a a a D a a a× ×= ∈ = ∈   

and 1 2 .N N N= +  Note that M N  should be satisfied for 
constructing an overcomplete dictionary [28]. The atoms in D are 
normalized to unit 2 norm− . In our study, each example of the 
dictionary is a M-dimensional GMM mean (shift) supervector. 

For any test vector My∈ with unit 2 norm− , y can be 
linearly represented in terms of D as 

1
1 2

2

[ ] .
x

y Dx D D
x
 

= =  
 

                                (4) 

If y is a valid test, it must lie in 1,D  thus
11 1 2[ , , , ]T

Nx α α α=  and 

2 [0, ,0] .Tx =   Clearly, this representation is sparse. To seek the 
sparse solution to (4), solving the following optimization problem 
[28, 29]: 

1 2
ˆ arg min subject tox x y Dx ε= − ≤                  (5) 

where 0ε > is a pre-set noise level value. A variant of the problem 
is also well-known as the unconstrained basis pursuit denoising 
(BPDN) problem with a scalar weight λ  [29]: 
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21
2 2 1

( ) min .
x

F x y Dx xλ− +                       (6) 

Once the sparse representation x̂ are obtained by solving (6), 
to determine the verification score, we considered 
the 1 norm− ratio as scoring metric [22, 23] defined as 

1 1 1
ˆ ˆ( )x xδ                                       (7) 

where 1 ˆ( )xδ  denote the entries in x̂  which correspond to the 
claimed device examples (i.e., 1̂x ). An alternative scoring metric, 
referred to as the 2 norm− residual ratio [27], is defined as 

2 12 2
ˆ ˆ( ) ( ) .y D x y D xδ δ− −                          (8) 

In addition to model in (4), a more general sparse 
representation model allow for a error vector [28, 29]. In such 
condition, the model should be modified as 

[ ],
x

y Dx e D I Bw
e
 

= + =  
 

                          (9) 

where Me∈ is an error vector, ( )[ , ] M M NB D I × += ∈  and 
[ ; ]w x e= . Similar to x in (6), w can be estimated by solving 

21
2 2 1

( ) min .
w

F w y Bw wλ− +                     (10) 

Once the sparse representation ˆ ˆ ˆ[ ; ]w x e= are determined, the 
aforementioned scoring metrics, 1 norm− ratio and the 

2 norm− residual ratio, should be redefined as 

1 1 1
ˆ ˆ( )x xδ                                    (11) 

and 
2 12 2

ˆ ˆ ˆ ˆ( ) ( )y e D x y e D xδ δ− − − −               (12) 
respectively. 
 
2.3 Source cell phone verification based on learned 
dictionary 
Compared to the exemplar based dictionary, the more commonly 
used dictionary is determined by learning dictionary on a training 
corpus using a certain algorithm. We considering replacing the 
exemplar based dictionary with a dictionary M ND ×∈ learned 
using K-SVD [30]. The K-SVD algorithm searches for the best 
possible dictionary for the sparse representation of the training 
vectors set { } 1

K
i i

Y y
=

= by solving 

{ }2
02 0,

min - subject to x iD X
Y DX i T∀ ≤               (13) 

where D is the dictionary to be learned, X is the corresponding 
sparse representation to Y and 0T is the sparsity constraint. Once 
the dictionary D is determined, the test vector y can be sparsely 
represented in terms of D using the orthogonal matching pursuit 
(OMP) algorithm [31] as 

0 0 2
ˆ arg min subject tox x y Dx ε= − ≤               (14) 

where 0x̂  is the sparse representation for the test vector. The 
sparse representation can also be obtained using the basis pursuit 
(BP) approach [29] by solving: 

1 1 2
ˆ arg min subject to .x x y Dx ε= − ≤            (15) 

As there are no class labels associated with the learned 
dictionary, the scoring metric for the exemplar based dictionary is 
no longer applicable here. To resolve this problem, we utilized the 
scoring method as in [23]. The score are determined by comparing 
the similarity of the sparse representation of the test vector with the  

Table 1. Brands and models of the 14 cell phones (× 2 denotes two 
cell phones of the same brand and model). 
 

BRAND MODEL 
SAMSUNG SAMSUNG E250 (× 2), D900 
NOKIA NOKIA 2730, 6500, 3600 (× 2), 6670 
MOTOROLA MOTOROLA Q 
SONY SONY W880 (× 2), K750I 
LG LG KE970 
HP HP IPAQ514 

 
Table 2. Number of trials for one test. 
 

Experimental 
Corpus 

cell 
phones 

 

Test 
utterances 

True 
trials 

False 
trials 

LIVE 14 1400 1400 18200 
TIMIT 14 1680 1680 21840 

 
sparse representation of the vector of the claimed device using the 
cosine kernel metric. Then the obtained score will be compared 
with a threshold for verification purpose as 

c t

c t

ˆ ˆ,
ˆ ˆ
x x
x x

θ><                                      (16) 

where tx̂  and cx̂ represent the sparse representations of the test 
supervector ty  and the supervector cy of the claimed device in 
terms of the learned dictionary D respectively. We proposed an 
alternative scoring method which computes the correlation 
between the two sparse representation as 

c c t t

c c t t

ˆ ˆ ˆ ˆ( ) , ( )
.

ˆ ˆ ˆ ˆ

x x x x

x x x x
θ><

− −

− −
                          (17) 

The diagram for source cell phone verification system based on the 
learned dictionary is illustrated in Fig. 1(b). 
 

3. EXPERIMENTAL SETUP 
 
We evaluated the source cell phone verification system on a corpus 
consists of speech recordings recorded by 14 cell phones [17-19]. 
The detail of the cell phones is presented in Table 1. The dataset 
was collected by two methods and each resulted in a subset. The 
first subset was constructed by playing a subset (24 speakers are 
selected) of the TIMIT corpus through all the 14 cell phones in a 
silent environment using a loudspeaker. (10 sentences for each 
speaker, approximately 3 seconds per sentence). Thus there are 240 
speech recordings for each cell phone. This corpus is referred to as 
TIMIT subset hereafter. The second subset was collected by a same 
person speaking into the 14 cell phones a passage in the same 
room. The length of each recording is approximately of 10 minutes. 
Then each utterance was evenly divided into 2 utterances (one for 
training and another for testing). Both the training utterance and 
the testing utterance were further divided into 100 short utterances 
each with the length of approximately 3 seconds. This corpus is 
referred to as LIVE subset hereafter. 

When we carried out experiment on LIVE subset, half of 
TIMIT subset were utilized for training the UBM and vice versa. 
For the experimental subset, half were randomly selected for 
constructing (or learning) dictionary and the remaining half were 
utilized as test trials. Specifically, the number of true trials and fal- 

1789



Table 3. EERs for exemplar based dictionary using different GMM 
supervector, scoring metrics and sparse representation models on 
two corpus. 
 

SYSTEM LIVE TIMIT 
Mean shift sv  + 1 norm− ratio         (7) 3.5% 5.06% 

Mean shift sv  + 2 norm− residual   (8) 2.64% 2.80% 

Mean shift sv  + 1 norm− ratio        (11) 2.43% 3.04% 

Mean shift sv  + 2 norm− residual  (12) 3.21% 3.39% 

Mean sv          + 1 norm− ratio         (7) 3.64% 5.18% 

Mean sv          + 2 norm− residual   (8) 2.36% 2.08% 
Mean sv          + 1 norm− ratio        (11) 2.79% 3.69% 

Mean sv          + 2 norm− residual  (12) 3.07% 4.11% 
 
se trials in a run of test are listed in Table 2, this configuration is 
identical to that used in [18]. For each speech recording, the whole 
utterance, including speech segments and non-speech segments, 
was segmented into frames by a 30 ms Hamming window at 15 ms 
frame rate. Then 12 MFCCs were computed using 27 triangular 
filters with c0 excluded. The MFCCs were concatenated with the 
energy feature as in [19] and resulted in a 13-dimensional feature 
vector. The number of mixture components in UBM was set to 32, 
therefore the dimensionality of the GSVs was of 416. For 
comparing the two kinds of dictionary to this problem, the sizes for 
the exemplar based dictionary and the learned dictionary were set 
to be identical ( 416 1260× for this study, this set also guaranteed 
that the dictionary is redundant and overcomplete). In particular, 
for the exemplar based dictionary, we set 1 90N = and 2 1170.N =  
Once the test scores were obtained, the equal error rate (EER) was 
computed as the metric for evaluation. 
 

4. RESULTS AND DISCUSSION 
 
Table 3 shows the EERs when utilizing the exemplar based 
dictionary. We found that the EERs for the GMM mean 
supervector and the GMM mean shift supervector are close. We 
found that when utilizing the 1 norm− ratio as the scoring metric, 
the GMM mean shift supervector outperforms the GMM mean 
supervector slightly in terms of the achieved EERs while the 
opposite results are observed when utilizing the 2 norm− residual 
ratio metric. Table 3 also shows the EERs for the two models 
defined by equation (4) and (9) respectively. It can be observed 
that, independent of which type of supervector is utilized, using 
equation (11) as the 1 norm− ratio metric outperforms equation 
(7), however, utilizing equation (8) as the 2 norm− residual ratio 
metric outperforms equation (12). Comparing equation (8) and 
(12), the reason why using equation (8) outperforms using (12) 
may be due to that the error vector ê  subtracted from y in (12) 
contains certain information related to the recording device (cell 
phone here). However, the reason why utilizing equation (11) 
outperforms (7) is worth further studying. We also found that, in 
our experiments utilizing the exemplar based dictionary, the lowest 
EER was achieved when the GMM mean supervector and the 

2 norm− residual ratio metric corresponds to equation (8) are 
utilized. 

Table 4 shows the EERs when utilizing the learned dictionary 

Table 4. EERs for dictionary learned on GMM mean supervectors 
using K-SVD when two sparse representation methods (OMP and 
BP) and two scoring metrics (cosine and correlation) are utilized 
on two corpus and the EERs for SVM based verification system. 
 

SYSTEM LIVE TIMIT 
OMP   + Cosine metric          (16)  5.27% 7.08% 
OMP   + Correlation metric   (17) 5.12% 6.61% 
BP       + Cosine metric          (16) 2.61% 4.32% 
BP       + Correlation metric   (17) 2.57% 4.17% 

SVM based system in [18] 4.36% 4.11% 
 
under various sparse representation methods and scoring metrics. 
Gaussian mean supervectors are utilized here. We found that, First, 
the proposed correlation metric outperforms the cosine metric in 
terms of EER. Second, sparse representation based on BP 
outperforms OMP for this study. Third, comparing Table 3 and 
Table 4, we found that, the best EER achieved on the exemplar 
based dictionary outperforms the K-SVD learned dictionary, the 
reason might be due to that the size of the training vectors set for 
learning the dictionary is limited and small in our experiment. In 
addition, it can be observed from Table 3 and Table 4 that the best 
EER achieved by the sparse representation based source cell phone 
verification scheme outperforms the SVM based source cell phone 
detection system in [18] on the same feature set (GMM mean 
supervectors with the dimensionality of 416 here). 

This is a preliminary study of sparse representation based 
source cell phone verification. We believe the potential of the 
proposed scheme. It should be noted that this study focus only on 
the cell phone verification problem, however, it is possible that the 
proposed scheme could be extended to other types of source 
recording device verification problem. The size of the experimental 
corpus is limited and the brand and model of the cell phones are 
somewhat outdated, source cell phone verification experiments on 
larger dataset including more current popular brand and model of 
cell phones deserve attention for future work. 
 

5. CONCLUSIONS 
 
In this paper, for addressing the problem of source cell phone 
verification from speech recordings, a cell phone verification 
scheme based on sparse representation is presented. We find that 
both exemplar based dictionary and dictionary learned by K-SVD 
are effective to this problem and exemplar based dictionary 
outperforms dictionary learned by K-SVD in our experiments. The 
correlation scoring method proposed to be used outperforms the 
cosine scoring method when utilizing the learned dictionary. The 
best EER for this study is achieved when exemplar based 
dictionary is utilized with the 2 norm− residual ratio as scoring 
metric and GMM mean supervector as dictionary atoms. To sum 
up, we propose an alternative cell phone verification scheme in this 
study. Future work include extending the experimental corpus for 
further evaluating the reliability of the proposed scheme and 
applying the method to other source device verification problem 
such as microphone verification etc. 
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