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ABSTRACT

A visual cryptography scheme (VCS) is an encryption method
for images that does not need a computer to decode a secret
image. In this paper we propose a simple, progressive VCS
which is constructed from a traditional threshold VCS. Our
progressive VCS has better decoded image quality and flexi-
bility than the Fang–Lin scheme, a previous progressive VCS.
We also present a block-wise progressive VCS which has jig-
saw puzzle like decryption, and an XOR-based progressive
VCS without pixel expansion. We give some experimental
results which show that our scheme is superior to the Fang–
Lin scheme with respect to the decoded image quality and the
decoding speed controllability.

Index Terms— Contrast, pixel expansion, progressive
scheme, threshold scheme, visual cryptography

1. INTRODUCTION

In this paper1 we propose a simple, progressive VCS that is
constructed from a traditional threshold VCS [2]. Our scheme
is secure and guarantees the decoded image quality. Fur-
ther, our decryption has not only a threshold structure but
also a progressive refinement: the number of shares pooled
is smaller than the threshold, then stacking the shares reveals
nothing about the secret image, but if the number of shares
pooled exceeds the threshold and becomes larger and larger,
then the secret image reveals progressively.

The paper is organized as follows: In Section 2 we give
the details of our progressive VCS and analyze our scheme
in terms ofaverage contrast, a generalization of the conven-
tional contrast. In Section 3 we show an XOR-based pro-
gressive VCS without pixel expansion. In Section 4 we show
some experimental results and compare our scheme with the
Fang–Lin scheme [3], one of previous progressive VCSs (see
also [4, 5, 6]). The results show that our scheme is superior
to the Fang–Lin scheme with respect to the decoded image
quality and the decoding speed controllability.

We generally follow the notation and terminology used in
the literature of VC (see, e.g., [7]). The proofs of the lemmas
in the text are omitted due to lack of space.

1This paper is an extended and improved version of [1].

2. PROPOSED PROGRESSIVE VCS

2.1. Review of Threshold VC

Our scheme is constructed from a(t, n)-threshold VCS. Be-
fore giving the details of our scheme we briefly review the
threshold VCS of Naor and Shamir [2]. To illustrate the
concept of threshold VC we restrict ourselves to the(2, 2)-
threshold VCS. In this scheme two participants and a dealer
(a trusted third party) are involved. The dealer encodes a
secret image to two shares and distributes each of them to
each one of the participants. Let

A0 =

[
1 1 0 0
1 1 0 0

]
, A1 =

[
1 1 0 0
0 0 1 1

]
.

We call the above two matrices,A0 andA1, thebasis matri-
cesof the(2, 2)-threshold VCS. Using the basis matricesA0

andA1, we defineC0 (resp.C1) as the set of all the matrices
obtained by permuting the columns ofA0 (resp. A1). The
encryption algorithm of the(2, 2)-threshold scheme is as fol-
lows. If a pixel in the secret image is white, then the dealer
randomly chooses one of matrices inC0 and distributes the
first row of the chosen matrix to one participant and the sec-
ond row to the other. A black pixel is encrypted in the same
way usingC1 instead of usingC0. Now each pixel in the se-
cret image is expanded into a2 × 2 block of subpixels and
the images generated by the encryption algorithm are called
shares, which are four times larger than the original image
(the (2, 2)-threshold scheme haspixel expansionfour). The
secret image can be recovered by simply stacking two shares,
which corresponds to ORing the two rows ofA0 (resp.A1).
The relative difference between blackness of decoded black
and white pixels,α = (4 − 2)/4 = 1/2, is calledcontrast.
For more details on the formal definition and useful properties
of threshold schemes see [2]. For later use we give some ex-
amples of the parameters of a(t, n)-threshold VCS with pixel
expansion four. (i)(t, n) = (2, 4): A1 is the4 × 4 identity
matrix andA0 is the4 × 4 matrix whose rows are copies of
(1, 0, 0, 0). (ii) (t, n) = (3, 3):

A0 =

1 1 0 0
1 0 1 0
0 1 1 0

 , A1 =

1 1 0 0
1 0 1 0
1 0 0 1

 .
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2.2. (t, n)-Threshold Progressive VCS

In this section we give the details of our progressive VCS. Let
2 ≤ t ≤ n0 ≤ n be positive integers and assume that there ex-
ists a(t, n0)-threshold VCS. Below we will construct a(t, n)-
threshold progressive VCS that encrypts a secret image ton
shares and has the decryption property that if the number of
shares pooled is less than thresholdt then the stacking of the
shares pooled reveals nothing about the secret image, but if
the number of shares pooled exceeds thresholdt and becomes
larger and larger then the stacking reveals the secret image
progressively. Here we consider the caset = 2, 3 only.

Our construction is very simple: we extend the basis ma-
trices of a(t, n0)-threshold VCS to larger matrices in a prob-
abilistic way. LetA0 andA1 be then0×m basis matrices of a
(t, n0)-threshold VCS. For practical applications and for fair
comparison with the Fang–Lin scheme we restrict ourselves
tom = 4, i.e., a scheme with pixel expansion four. We extend
n0 × m matricesA0 andA1 to n × m matricesÂ0 andÂ1

by attaching newn− n0 rows toA0 andA1, respectively. To
save space we consider the transposesAT

0 andAT
1 and attach

new columns toAT
0 andAT

1 . LetAT
1 = [a1, . . . ,an0 ], where

ai, 1 ≤ i ≤ n0, is theith column of theAT
1 . We generate

n−n0 columns,aj , n0 +1 ≤ j ≤ n, to be attached toAT
1 in

the following way:

aj =


a1 with probabilityp,

. . . . . .

an0 with probabilityp,

0 with probability1− n0p,

where0 ≤ p ≤ 1/n0 and0 denotes the all-zero vector of
lengthm. This results inÂT

1 = [AT
1 ,an0+1, . . . ,an]. In the

same way we construct̂AT
0 . Note that in the threshold VCS

with t = 2 the extension ofA0 is just to attach some copies of
the row of fixed pattern or the all-zero vector. The parameter
p introduced above makes the decoding speed variable: ifp
becomes large then the decoding accelerates.

Our encryption algorithm is almost the same as that of the
traditional threshold VCS. In our scheme, however, we per-
mute not only the columns but also the rows of the extended
basis matriceŝA0 and Â1. The row permutation is crucial
since, if the order of the rows is fixed, then the statistics of the
shares corresponding to the rows attached to the underlying
basis matrix differs from that of the shares corresponding to
the original rows of the basis matrix, which distinguishes im-
portant shares from less important ones. Consider, for exam-
ple, the extremal casep = 0. In this case the attached rows are
the all-zero vectors and the corresponding shares have noth-
ing to do with the secret image.

We remark that the extended basis matrices must be con-
structed for each pixel encryption: if we use the same ex-
tended basis matrices for all black/white pixels then progres-
sive decoding does not work. To make the scheme proba-
bilistic we need a large number of samples that obey a given

distribution. This is similar to the law of large numbers: the
empirical distribution of a large number of samples approxi-
mates the true probability distribution.

In the next section we will show that the extended basis
matrices constructed above not only generate a secure share
but also guarantee the decoded image quality which is the
same as that of the underlying(t, n0)-threshold VCS (e.g.,
if we use the(2, 4)-threshold VCS as an underlying scheme
then the final conventional contrast is3/4).

2.3. On the Contrast in Our Scheme

In our (t, n)-threshold progressive VCS, if the number,k, of
shares pooled exceeds the thresholdt, then the stacking result
reveals the secret image in a probabilistic manner. In this sec-
tion we investigate the visual quality of a decoded image as a
function ofk.

We first consider the(2, n)-threshold progressive VCS
constructed from the(2, 2)-threshold VCS, wheren ≥ 2. Let
pi(k) (resp.qi(k)) denote the probability that a decoded block
corresponding to a black (resp. white) pixel in the secret im-
age hasi black subpixels (hence4 − i white subpixels) after
stackingk shares. In fact, in the(2, n)-threshold progressive
VCS,pi(k) is defined fori = 0, 2, 4. Recall the basis matrix
A1 of the (2, 2)-threshold VCS. Each row ofA1 has (Ham-
ming) weight2 and the ORing of the two rows has weight
4, while an attached all-zero vector has weight0. Similarly,
qi(k) is defined fori = 0, 2. For notational simplicity we de-
fine pi(k) (resp. qi(k)) for all 0 ≤ i ≤ 4 by simply setting
pi(k) = 0 (resp.qi(k) = 0) if i is not a possible value. Note
that there is no relation betweenpi(k) andqi(k) since these
are probabilities conditional on exclusive events.

Definition 1. Thek-th average contrastis defined as

α(k) =

∑4
i=0 i · pi(k)−

∑4
i=0 i · qi(k)

4
.

Note that
∑4

i=0 i · pi(k) (resp.
∑4

i=0 i · qi(k)) is the average
number of black subpixels in a decoded block corresponding
to a black (resp. white) pixel in the secret image.

We first give the exact expression forqi(k) where possible
values ofi are0 and2, more precisely, ifk = 1, . . . , n − 2,
theni can take value0 or 2 (note that there is a possibility that
all thek shares are the all-zero vectors), and ifk = n− 1, n,
theni = 2 (at least one ofk shares has weight2).

Lemma 1.

q0(k) =

{
(1− 2p)k

(
n−2
k

)(
n
k

)−1
, k = 1, . . . , n− 2,

0, k = n− 1, n;

q2(k) =

{
1− q0(k), k = 1, . . . , n− 2,

1, k = n− 1, n.

Similarly, we can give the exact expression forpi(k):
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Lemma 2. p0(k) = q0(k), k = 1, . . . , n;

p2(k) =



1− p0(1), k = 1,

2
[
(1− p)k−1

(
n−2
k−1

)
+
(
(1− p)k − (1− 2p)k

)
×
(
n−2
k

)](
n
k

)−1
, k = 2, . . . , n− 2,

2n−1(1− p)n−2, k = n− 1,

0, k = n;

p4(k) =


0, k = 1,

1− p0(k)− p2(k), k = 2, . . . , n− 1,

1, k = n.

Using Lemmas 1 and 2 we can compute the average con-
trast of the(2, n)-threshold progressive VCS.

Proposition 1. A share generated by the scheme is secure. In
particular, the first average contrast of the scheme is zero.

Proof. Sincep0(1) = q0(1) andp2(1) = q2(1) (and also
p4(1) = 0), an encryption of a black pixel has the same statis-
tics as that of a white pixel and one cannot distinguish a black
pixel encryption from a white one. Also from this fact the 1st
average contrast of the scheme is shown to be 0.

We compare our scheme with the Fang–Lin scheme [3]
(see also [5, 6]), the first progressive VCS, in terms of aver-
age contrast. (The explicit expression for the average contrast
of the Fang–Lin scheme is omitted for lack of space.) In Fig. 1
we show the average contrast of our(2, 6)-threshold progres-
sive VCS based on the(2, 2)-threshold VCS with varying pa-
rameterp. For comparison we also show the average contrast
of the Fang–Lin scheme. As shown in Proposition 1 a share
generated by our scheme has average contrast0 and the final
stacking result has contrast0.5, irrespective of the value ofp,
whereas a share of the Fang–Lin scheme has a nonzero value
of average contrast and the final stacking result has average
contrast less than0.45.

Similarly, we can derive the explicit expression for the av-
erage contrast of the(3, n)-threshold progressive VCS based
on the(3, 3)-threshold VCS, wheren ≥ 3, and show that the
stacking of up to any two shares reveals nothing about a secret
image, although the details are omitted for lack of space.

2.4. Extension to a Block-wise Progressive VCS

The scheme described in Section 2.2 encrypts each pixel in
the secret image to a2 × 2 block of subpixels. It is easy to
extend the scheme to a block-wise encryption scheme. In the
block-wise scheme we divide the secret image of sizeN ×M
intoNM/L2 blocks of sizeL×L whereL dividesN andM ,
and we take parameterp to be zero. The block-wise encryp-
tion algorithm is almost the same as the pixel-wise one except
that the row permutation is fixed for eachL× L block in the
secret image, which leads to a jigsaw puzzle like decryption.
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Fig. 1. Comparison of our scheme with the Fang–Lin scheme.

3. XOR-BASED PROGRESSIVE VCS WITHOUT
PIXEL EXPANSION

The proposed scheme in the previous section has pixel expan-
sion, which is undesirable in practical applications. In this
section, assuming that optical devices are available, we give a
progressive VCS without pixel expansion, which is based on
the conventional XOR-based(2, 2)-threshold VCS (see, e.g.,
[7, Chap. 6]) whose basis matrices are given by

C0 =

{[
1
1

]
,

[
0
0

]}
, C1 =

{[
1
0

]
,

[
0
1

]}
.

The construction of the extended basis matrices of the XOR-
based(2, n)-threshold progressive VCS is almost the same as
the OR-based(2, n)-threshold progressive VCS, wheren ≥
2, except that parameterp is taken to be0 (that is, we sim-
ply attach some zeros to a basis matrix), and so we omit the
details. The encryption algorithm is also the same as that of
the OR-based one. On the other hand, the decryption of an
XOR-based scheme uses the XORing instead of the stacking
(ORing).

We can define the average contrast of an XOR-based
scheme in the same way as in the previous section. Letp(k)
(resp. q(k)) denote the probability that a decoded pixel cor-
responding to a black (resp. white) pixel in the secret image
has a value of1 (i.e., decoded pixel is black) after XORingk
shares. Note thatp(n) = 1 andq(n) = 0 are obvious from
the construction. In fact, it is easy to show the following.

Lemma 3.

p(k) =

{(
n−1
k−1

)(
n
k

)−1
, k = 1, . . . , n− 1,

1, k = n;

q(k) =

{(
n−2
k−1

)(
n
k

)−1
, k = 1, . . . , n− 1,

0, k = n.
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Note thatp(k) ≥ q(k) for k = 1, . . . , n. We define the
k-th average contrast in the XOR-based scheme asα(k) =
p(k)− q(k).

Proposition 2. α(k) = k(k−1)
n(n−1) for k = 1, . . . , n. In partic-

ular, α(1) = 0. So a share generated by the scheme reveals
nothing about a secret image.

Proof. Use Lemma 3 and the definition ofα(k).

Note thatα(k) is an increasing function ofk. Since the
proposed XOR-based progressive VCS has no pixel expan-
sion and the final average contrast (i.e., conventional contrast)
attains the maximum value of 1, it is advantageous against
the OR-based scheme with a pixel expansion factor of4 and
a final average contrast of at most3/4. Furthermore, since
XOR operations are easy to perform using the polarization of
light, an XOR-based progressive VCS can be implemented
with low complexity (see, e.g., [7, Chap. 6] and references
therein).

Finally, we remark that an XOR-based progressive VCS
can be extended to a block-wise progressive one in the same
way as in Section 2.4.

4. EXPERIMENTAL RESULTS

In this section we experimentally examine the following three
points: (i) effect of parameterp of an OR-based progressive
VCS on the decoding speed; (ii) effect of block-wise process-
ing on the decoded image; and (iii) comparison of our XOR-
based scheme with the Hou–Quan scheme [6]. We have im-
plemented in Matlab our OR-based scheme constructed from
the(2, 2)-threshold VCS that has contrast1/2. The secret im-
age was a binary image obtained from the256×256 grayscale
image “Lena” by using the dither function of Matlab. Fig-
ures 2 and 3 show the results of our scheme with parameter
p = 0.1 andp = 0.5, respectively. To save space we have
rescaled the size of the images. The results show that if pa-
rameterp becomes large, the decoding accelerates as shown
by the contrast analysis in Fig. 1, so we can control the de-
coding speed, which is an advantage of our scheme against
previous progressive VCSs.

Note that the security of our scheme means secure shares
and says nothing about more than one share (stacking two
shares already reveals something about a secret image).

Figures 4 shows an example of a block-wise progressive
VCS based on the(3, 3)-threshold VCS with contrast1/4.
The block size was taken to be16 × 16. It can be seen from
the figures that the secret image is block-wise recovered.

We have also implemented our XOR-based scheme and
the Hou–Quan (OR-based) scheme withn = 5, both of which
have no pixel expansion. Figures 5 and 6 show the results of
our scheme and the Hou–Quan scheme, respectively. Since
these schemes are based on different mechanisms, the com-
parison is meaningless, however, if both are implemented on
a computer, they are comparable.

(a) (b) (c) (d) (e)

Fig. 2. Proposed(2, 5)-threshold progressive VCS withp =
0.1. (a) shows a share; (b), (c), (d) and (e) show the resulting
images obtained from stackingk shares,k = 2, 3, 4, and5(all
shares), respectively.

(a) (b) (c) (d) (e)

Fig. 3. Proposed(2, 5)-threshold progressive VCS withp =
0.5. Figures (a)-(e) correspond to those of Fig.2.

(a) (b) (c) (d) (e)

Fig. 4. Proposed(3, 5)-threshold block-wise progressive
VCS. Figures (a)-(e) correspond to those of Fig.2.

(a) (b) (c) (d) (e)

Fig. 5. Proposed XOR-based progressive VCS withn = 5.
Figures (a)-(e) correspond to those of Fig.2.

(a) (b) (c) (d) (e)

Fig. 6. The Hou–Quan scheme withn = 5. Figures (a)-(e)
correspond to those of Fig.2.

5. CONCLUSION

In this paper we have presented some progressive VCSs using
traditional threshold VCSs, i.e., the OR-based pixel/block-
wise threshold progressive VCSs with pixel expansion 4
and contrast1/4, 1/2, 3/4, and the XOR-based scheme
with no pixel expansion and contrast 1. Compared with the
Fang–Lin scheme, our OR-based schemes can control the
decoding speed and guarantee the contrast. The XOR-based
scheme has an advantage of the contrast againt the Hou–Quan
scheme, although their scheme is an OR-based one.
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