
UNSUPERVISED DETECTION OF MALWARE IN PERSISTENT WEB TRAFFIC

Jan Kohout?† Tomáš Pevný?†

?Cisco Systems
†Faculty of Electrical Engineering, Czech Technical University in Prague

ABSTRACT

Persistent network communication can be found in many in-
stances of malware. In this paper, we analyse the possibility
of leveraging low variability of persistent malware communi-
cation for its detection. We propose a new method for captur-
ing statistical fingerprints of connections and employ outlier
detection to identify the malicious ones. Emphasis is put on
using minimal information possible to make our method very
lightweight and easy to deploy. Anomaly detection is com-
monly used in network security, yet to our best knowledge,
there are not many works focusing on the persistent commu-
nication itself, without making further assumptions about its
purpose.

Index Terms— malware, outlier detection, persistent
communication

1. INTRODUCTION

Bots differ from other types of malware by having a command
and control (C&C) channel through which the botmaster con-
trols the bot. The C&C channel can be implemented by using
different network paradigms (p2p networks, central or flux-
ing servers, etc.) and protocols (custom, HTTP, plain TCP or
UDP, etc.), but there has to be a communication path between
C&C server and bots. The channel is maintained through the
life of the bot, and once it is lost, the control over the bot
is lost, too. This definition implies that the channel needs to
be persistent in the sense that the bot receives the commands
repeatedly in time. However, bots are not the only type of
malware which produces persistent communication. Malware
can repeatedly check connection to the Internet, perform click
fraud, or download advertisements all of which can manifest
as a persistent connection.

On the other hand, user’s legitimate activities produce per-
sistent connections as well. Repeated visits of a news portal,
e-mail account, social network or application checks for up-
dates being examples. All of these make the communication
within a typical corporate network very heterogeneous and
therefore provides good conditions for malware to hide its ac-
tivities.

Many companies block traffic other than HTTP to miti-
gate unwanted activity, but malware has caught up and uses

HTTP as well which stimulates the need for a technique that
separates malicious HTTP traffic from benign. The goal of
this paper is to utilize outlier detection for identification of
infected computers within a network. The proposed method
relies on the fact that statistical fingerprint of malicious per-
sistent connection is recognizably different from other, legiti-
mate connections. The method is very lightweight, as it does
not inspect traffic content and it uses only information about
transferred bytes and timings of individual requests. This al-
lows to effectively scan communication in large corporate net-
works.

Although outlier detection methods in network security
have been already widely studied, this work differs from prior
art by (i) focusing on persistent communication only, without
further assumptions about its purpose and (ii) by proposing a
novel representation which well describes recurring commu-
nication and well captures its important characteristics.

The method is evaluated on data from web proxy logs
(HTTP traffic), but as we do not use any text information from
the HTTP headers, this method can be easily used, for exam-
ple, on transport layer data.

2. RELATED WORK

The closest works can be found in the area of machine learn-
ing for detection of C&C channels, where the assumption
about similarity of bots communication within one botnet is
frequently made [1]. BotMiner [2] is a very complex system
designed for detecting C&C by correlating communication
patterns of network hosts. For successful detection it needs
multiple hosts infected with the same botnet inside the net-
work. BotSniffer [3] clusters the communication by using
features derived from the content of packets and as previ-
ous works it needs more hosts to be infected. Ref. [4] based
their detector on the assumption that access patterns of human
client will have higher variability than malware client. As
shown below, we made the similar observation in malware’s
persistent connections.

The definition of persistent connection used in this work
is based on [5]. Ref. [6] uses it to train a supervised classifier
to identify botnet’s persistent communication. The similar ap-
proach on a flow level is used in [7].

Our representation of network communication bears some

1757978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

similarity to Ref. [8], which uses sizes and inter-arrival times
of packets from the IP level flows for application protocol
fingerprinting and classification, but our representation and
objects of modelling (persistent connections vs. flows) are
different.

3. THE ALGORITHM

The algorithm’s description is broken into two parts: first,
fingerprints of persistent connections are defined; second, the
choice of outlier detection algorithm is justified.

Before diving into the actual description, we define the
terms used hereafter. Web request is one HTTP request mes-
sage [9] for a particular resource. Connection is a set of web
requests that share the same local and remote endpoints. In
this work, the endpoints are identified by local user’s user-
name (local endpoint) and target second level domain (remote
endpoint). Persistent connection is a connection in which re-
quests occur repeatedly over a certain time period, e.g., one
day. This definition is slightly fuzzy allowing various mech-
anisms selecting persistent connections. Below we use mod-
ification [10] of the original approach [5] for better memory
efficiency.

Furthermore, we use a limit Ku to filter out persistent
connections to remote endpoints (domains) used by more
than Ku local users. The reason is that these domains are
expected to be popular services and therefore not malicious
(e.g., Google). For such services we recommend to build a
special model to identify outliers within them, which can be
an indication of service misuse. Nevertheless, in our database
of malware samples we did not have such sample and there-
fore could not verify this.

3.1. Fingerprints of persistent connections

A fingerprint characterizing statistical properties of a persis-
tent connection is extracted from all of its web requests from a
certain period of time. Our experiments used one day period.
Fingerprints use only following four quantities from each web
request:

1. bytes sent rup from the client to the server,

2. bytes received rdown by the client from the server,

3. duration: rtd (in milliseconds) of handling the request,

4. inter-arrival time rti (in seconds) elapsed between
start of the current and previous request.

Thus, for purpose of this paper, the request r can be reduced
to a 4-tuple r = (rup, rdown, rtd, rti) and the terms tuple and
web request can be used interchangeably.

The fingerprint is a joint histogram of the four quantities
estimated from all tuples from a given persistent connection.

0 1 2 2.6 3 4 5
0

0.4

0.6

1

+0.6
+0.4

FilterFilter

Bins centres

C
on

tr
ib

ut
io

n

Fig. 1. Example of updating a one-dimensional soft histogram
with value 2.6. It contributes with 0.4 to the bin centred in 2
and with 0.6 to the bin centred in 3. Filters that influence the
contribution are highlighted.

The advantage of the joint histogram is that it captures de-
pendencies between the quantities. Its disadvantage is that in
order to capture the dependencies accurately, the number of
bins can be high. In our implementation it was 114 = 14641.
We argue that the dimension of the fingerprint is not a prob-
lem because as shown below, the histogram will be typically
very sparse, especially for persistent connections made by
malware. Moreover, the field of text document analysis [11]
works with high dimensional yet sparse data as well. In order
to narrow the range of modelled values and equalize the vari-
ances on low and high values, all values in tuples are trans-
formed to logarithmic scale before calculating the joint his-
togram.

The common approach to build a histogram, which is here
called hard histogram, is to use each sample to update only
the one bin into which the given sample falls. For example,
ith bin with bounds [bi, bi+1) is updated by 1 irrespectively
if the sample is close to bi or bi+1. This strict quantization
makes values of histogram bins sensitive to small variations
in the data.

To decrease this sensitivity, we borrow an idea from an ar-
ray of overlapping filter banks frequently used in digital sig-
nal processing [12]. The update procedure in so-called soft
histogram divides the contribution of a sample to two neigh-
bouring bins proportionally to their distance. The situation
for one-dimensional case is illustrated in Figure 1. When the
soft histogram is updated by a sample u, two nearest bins with
centres in buc and buc+ 1 are updated by 1− (u− buc) and
u− buc, respectively.

To capture joint frequencies of multiple quantities, the soft
histogram is naturally extended to multiple dimensions. With-
out loss of generalization it is assumed that m-dimensional
soft histogram (in this work, we use m = 4) has bins centred
at integer lattice points [b1, ..., bm] ∈ {0, ..., n}m, where n
acts as an upper bound on values to be inserted to histogram.

1758

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Nr. of non-zero bins

C
D

F

Background
Malware

Fig. 2. Cumulative distribution functions (CDF) of number of
non-zero bins in soft histograms of background (i.e., assumed
to be mostly benign) and malicious persistent connections.

Based on the values that are commonly observed in web re-
quests we used n = 10. Updating soft histogram with a tuple
(u1, u2, . . . , um) means first calculating indices li and contri-
butions vi to “left” bins as

li = buic, vi = 1− (ui − li),

and then updating all bins centred in vertices

{(l1 + i1, . . . , lm + im)|(i1, . . . , im) ∈ {0, 1}m}

with values
∏m

j=1 v
1−ij
j (1− vj)

ij .
The motivation behind this representation is the observa-

tion that malicious persistent connections tend to have lower
variability than that of the regular user. This is illustrated in
Figure 2 which shows the cumulative distribution of non-zero
bins in histograms of malicious and background persistent
connections. By background connections we mean all con-
nections revealed in traffic from three different companies in
which we assume that the vast majority of traffic is benign
(for details about the data used for this measurement see Sec-
tion 4.1). The curve for malware is steeper which means that
the number of non-zero bins in histograms is lower and the
connections are more regular.

The fingerprint construction is finalized by mapping the
soft histogram to a (n+ 1)m-dimensional column vector.

3.2. Outlier detection

Fingerprints of persistent connections are numerical vectors
of fixed length on which most of outlier detection algorithms
can be readily applied [13]. Since malware’s fingerprints can
form small clusters, we promote to use OutRank [14] algo-
rithm, because it should be robust against cases when out-
liers form small clusters. The formation of small clusters can
be caused, for example, by multiple infections of the same

malware family with similar fingerprints or by a single mal-
ware instance maintaining several persistent connections with
the same purpose (to improve robustness). The experimental
comparison of OutRank and k-nearest neighbours based de-
tector [15], which is an asymptotically consistent density level
estimator, supports the choice.

The choice of distance measure between two fingerprints
was inspired by measuring similarity of vectorized text doc-
uments, because in analogy to them, fingerprints are sparse.
We use cosine distance defined as

d(x1, x2) = 1− xT
1 · x2

||x1|| · ||x2||
,

where x1, x2 are fingerprints of two persistent connections.
Note that since all items of the fingerprint are non-negative,
the cosine distance is always between zero and one.

Finally, the term frequency - inverse document frequency
(TF-IDF) weighting is applied on the fingerprints, which puts
more emphasis on less frequent non-zero items. It multi-
plies each item bi in all fingerprints by log

(
N+1
Nbi

+1

)
, where

N is the total number of fingerprints and Nbi is the number
of fingerprints with non-zero value of the item bi. TF-IDF
weighting is very common in fields utilizing sparse represen-
tations, such as text documents analysis [16] and computer
vision [17].

4. EXPERIMENTAL EVALUATION

4.1. Experiments setup

The ability of soft histograms representation to separate ma-
licious and benign traffic by means of outlier detection was
evaluated in the following way: We compared (i) the OutRank
and k-NN algorithms and (ii) fingerprints based on soft and
hard histograms. Combination of two detection algorithms
with two versions of histograms lead to four different detec-
tors.

The evaluation was performed on web proxy logs from
one day of traffic in three distinct companies (referred as A,
B and C) acquired during 2014. Based on the total volume of
traffic we set the limit Ku = 10. The total number of persis-
tent connections used for evaluation was 1732 in company A,
681 in company B, and finally 836 in company C.

Because reliable manual labelling of all 3249 persistent
connections in the data sets is difficult and subjective to hu-
man judgement, we treated all these persistent connections
as legitimate. Malicious web requests produced by malware
were obtained from 14 different malware binaries executed
in a controlled environment of malware laboratory. These
binaries included variants of malware labelled by AV en-
gines as ZeroAccess, Kelihos, ZBot, Asprox, Win32.Injector,
Wapomi, Somoto, SS.Worm-generic and Downloader.UFN.
From them we isolated 50 persistent connections. Infection
of a user by a malware sample was simulated by adding all

1759

hard histogram soft histogram
Data set k-NN OutRank k-NN OutRank

A 0.855 0.892 0.862 0.942
B 0.889 0.896 0.912 0.935
C 0.871 0.867 0.880 0.933

Table 1. Average AUC values (computed over the 14 malware
samples) for all combinations of hard and soft histograms, and
OutRank and k-NN outlier detection algorithms. Higher is
better with one being maximum, best results on each company
are bold-faced.

traffic from the malware sample’s persistent connections to
the background data. Because none of the domains utilized
in malicious persistent connections were visited by any user
in the background data, there was no risk of collision.

The accuracy of detection was measured by the area un-
der the ROC (receiver operating characteristic) curve (AUC),
which is a common measure in cases when detection thresh-
old cannot be determined beforehand. AUC was calculated
for every combination of background data set (out of 3) and
each malware sample (out of 14), which lead to 3 × 14 eval-
uations of every detector.

4.2. Experimental results

Average AUCs over all 14 malware samples for combinations
of outlier detection algorithm and histogram (fingerprint)
types are presented in Table 1. We can see that in all cases
detectors employing fingerprints based on soft histograms
performed better irrespective to used outlier detection algo-
rithm. Similarly, all detectors with OutRank outlier detection
algorithm were always better than those with the k-NN. This
means that the proposed fingerprints based on soft histograms
with OutRank algorithm performed the best on our data with
average AUC being 0.936.

To get further insight into the detector we analysed 10 per-
sistent connections with the highest outlier scores assigned by
the best detector from each data set. Deeper analysis of these
most anomalous connections revealed 3 persistent connec-
tions in data set A, 1 connection in data set B and 2 connec-
tions in data set C that were related to malicious activity. The
most frequently observed type of legitimate but anomalous
connections were those trying to reach a web server which
was either unavailable (returning response code 50X) or the
requested resource could not be accessed.

In Section 3.2, we have argued that OutRank algorithm
should be more robust with respect to small clusters of out-
liers which we can expect to be present in real data. Figure 3
shows average AUC of OutRank and k-NN algorithms with
fingerprints based on soft histograms for varying number of
malware samples inserted into the background data sets. The
average is calculated over all three background data sets and

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

1

Nr. of malware samples

A
ve

ra
ge

A
U

C

OutRank
k-NN

Fig. 3. Average values of AUC for OutRank and k-NN out-
lier detection algorithms with fingerprints based on soft his-
tograms for varying number of malware samples inserted into
the background data sets. The average is calculated over all
three background data sets and random selections of malware.

random selections of malware. We can observe that the AUC
of the k-NN detector drops more rapidly than that of OutRank
as the number of infected users increases. This means that in
our settings the OutRank is indeed more robust against multi-
ple infections.

5. CONCLUSION

This paper proposed a statistical description of a distribution
of sizes, timings and durations of requests in persistent web
connections. The description is based on a joint histogram
of modelled quantities by so-called soft histogram, which is
smoothed version of the traditional histogram with crisp bin
bounds. We demonstrated that malicious persistent connec-
tions are more regular than those of legitimate users. There-
fore, they manifest themselves as outliers.

The advantage of the proposed description was demon-
strated by creating detectors utilizing off-the-shelf outlier de-
tection methods. The detectors were evaluated by identifying
malicious persistent connections inserted into the traffic from
3 different companies. On average we achieved the best ac-
curacy of AUC 0.936.

The proposed method has two key advantages: it is
lightweight and it does not inspect the content, thus it can
be used for encrypted traffic. It is well suited as a filter be-
fore more sophisticated yet computationally more expensive
methods.

6. ACKNOWLEDGEMENT

The work of T. Pevný was also supported by the Grant
Agency of Czech Republic under the project P103/12/P514.

1760

7. REFERENCES

[1] H. R. Zeidanloo and S. Rouhani, Botnet Detection by
Monitoring Common Network Behaviors: Botnet De-
tection by Monitoring Similar Communication Patterns,
LAP Lambert Academic Publishing, 2012.

[2] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection,” in Proceedings
of the 17th Conference on Security Symposium, 2008.

[3] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detect-
ing botnet command and control channels in network
traffic,” in Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS’08),
2008.

[4] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and
C. Kruegel, “Disclosure: Detecting botnet command
and control servers through large-scale netflow analy-
sis,” in Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, 2012.

[5] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and
D. Papagiannaki, “Exploiting temporal persistence to
detect covert botnet channels,” in Proceedings of the
12th International Symposium on Recent Advances in
Intrusion Detection, 2009.

[6] G. Fedynyshyn, M. C. Chuah, and G. Tan, “Detection
and classification of different botnet C&C channels,” in
Proceedings of the 8th International Conference on Au-
tonomic and Trusted Computing, 2011.

[7] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghor-
bani, and D. Garant, “Botnet detection based on traffic
behavior analysis and flow intervals,” Computers & Se-
curity, 2013.

[8] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traf-
fic classification through simple statistical fingerprint-
ing,” SIGCOMM Comput. Commun. Rev., 2007.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee, “Hypertext Transfer
Protocol – HTTP/1.1,” 1999, [Online].

[10] J. Jusko, M. Rehák, and T. Pevný, “A memory ef-
ficient privacy preserving representation of connection
graphs,” in Proceedings of the 1st International Work-
shop on Agents and CyberSecurity, 2014.

[11] G. Salton, A. Wong, and C. S. Yang, “A vector space
model for automatic indexing,” Commun. ACM, 1975.

[12] J. G. Proakis and D. G. Manolakis, Digital Signal Pro-
cessing (3rd Ed.): Principles, Algorithms, and Applica-
tions, Prentice-Hall, Inc., 1996.

[13] C. C. Aggarwal, Outlier Analysis, Springer New York,
2013.

[14] H. D. K. Moonesinghe and P.-N. Tan, “OutRank: a
graph-based outlier detection framework using random
walk,” International Journal on Artificial Intelligence
Tools, 2008.

[15] K. Sricharan and A. O. Hero III, “Efficient anomaly de-
tection using bipartite k-NN graphs,” in Advances in
Neural Information Processing Systems 24: 25th An-
nual Conference on Neural Information Processing Sys-
tems 2011. Proceedings of a meeting held 12-14 Decem-
ber 2011, Granada, Spain, 2011.

[16] K. S. Jones, “A statistical interpretation of term speci-
ficity and its application in retrieval,” Journal of docu-
mentation, 1972.

[17] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate
image detection: min-hash and tf-idf weighting.,” in
BMVC, 2008.

1761

