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ABSTRACT

We study cyber-physical systems subject to dynamic sensor
attacks, relating them to the system’s strong observability.
First, we find necessary and sufficient conditions for an at-
tacker to create a dynamically undetectable sensor attack and
relate these conditions to properties of the system dynamics
eigenvectors. Next, we provide an index that gives the min-
imum number of sensors that must be attacked in order for
an attack to be undetectable. Finally, we illustrate our results
with a numerical example on the Quadruple Tank Process.

Index Terms— Cyber-Physical Systems, Security, Sen-
sor Attacks

1. INTRODUCTION

The security of cyber-physical systems – systems that inte-
grate sensing, control, actuation components via a communi-
cation network – has received increased attention due to no-
table incidents of cyber-physical attacks. Events such as the
Maroochy Shire Council Sewage control incident [1] and the
Stuxnet Malware [2] have demonstrated the security vulnera-
bilities of cyber-physical systems monitoring large critical in-
frastructure. More recently, smaller scale cyber-physical sys-
tems such as commerical automobiles have become targets of
similar forms of attack [3].

In a sensor attack, an attacker exploits vulnerabilities in
the communication scheme to send falsified sensor data to
the controller. Controllers depend on sensor data to perform
tasks such as state estimation and output feedback, and con-
sequently, an attacker can manipulate the physical behavior
of a system simply by modifying its sensor measurements. In
order to limit damaging behavior, cyber-physical systems are
equipped with attack detectors. Static attack detectors verify
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the consistency of sensor measurements at a single time step
to determine the presence of a sensor attack [4]. Dynamic
attack detectors incorporate knowledge of system dynamics
to perform attack detection over multiple time steps and de-
tect certain attacks that are undetectable to static detectors [5].
Attack reconstruction algorithms identify the specific sensors
that fall under attack [6], [7], but have more restricted limita-
tions than attack detectors since there are certain attacks that
can be detected but not reconstructed.

This paper focuses on the fundamental limitations of dy-
namic sensor attack detection. We use the strong observabil-
ity property of a dynamical system [8], [9] to determine the
existence of dynamically undetectable sensor attacks against
a particular system. The strong observability property is a
general framework for analyzing limitations of dynamic at-
tack detection that extends to systems under both actuator and
sensor attacks. In this paper, we derive results for the case of
systems under sensor attacks. We give a necessary and suf-
ficient condition for the attacker to be undetectable in terms
of the system dynamics eigenvectors. We provide an index
that determines the minimum number of sensors that must be
attacked in order for an attack to be undetectable and use this
index to demonstrate a design guideline for improving the re-
silience of the system to sensor attacks. Finally, we illustrate
our results with a numerical example.

The rest of this paper is organized as follows. Section 2
specifies the system and attack model, reviews attack detec-
tion, and formalizes the problem. Section 3 provides funda-
mental limitations of dynamic sensor attack detection and re-
lates undetectable attacks to strong observability. We provide
a numerical example in Section 4 and conclude in Section 5.

2. BACKGROUND

2.1. System and Attack Model

We use the following linear, time invariant, state space model
for the cyber-physical system under sensor attack:

x(k + 1) = Ax(k),

y(k + 1) = Cx(k) +Da(k),
(1)
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where x ∈ Rn is the system state, y ∈ Rp is the system output
(sensor measurements), k ∈ Z is the time index and a(k) ∈
Rs is the sensor attack, which is unknown to the system. The
system has an unknown initial state x(0). The matrix A ∈
Rn×n, which represents the system dynamics, and the matrix
C ∈ Rp×n, which represents the system sensing topology,
are known to the system. The matrix D ∈ Rp×s represents
the capabilities of the attacker and is unknown to the system.
Without loss of generality, we assume that D is a full rank
matrix. Furthermore, we assume that the pair (A,C) of the
system in (1) is observable. Equation (1) is a standard model
for a cyber-physical system under sensor attack [6], [7], [10].

The attacker has full knowledge of the system dynamics,
represented by the A matrix, and sensing topology, repre-
sented by the C matrix, and can choose the attack a(k) ar-
bitrarily at each time k. The attacker is restricted to attacking
only a subset K ⊂ {1, 2, . . . , p} of all sensors. The set K
is known as the attack set. It has cardinality |K| = s, which
is unknown to the system. This attacker model follows the
sparse sensor attack model presented in [6] and [7]. For each
attack set K, there is a corresponding DK matrix to represent
the attacker’s capabilities in equation (1):

DK =
[
eK1

eK2
· · · eKs

]
, (2)

where K = {K1,K2, . . . ,Ks} and ej , j = 1, . . . , p, is the
jth canonical vector of Rp. We assume that the attacker knows
DK . As notational shorthand, let ΣK = (A,C,DK) repre-
sent the system in equation (1) with attack set K.

2.2. Attack Detection

Attack detection algorithms use knowledge of the system
sensing mechanism and system output to determine whether
or not a sensor attack has occurred. Static attack detectors
monitor the consistency of the system output with the sensing
mechanism at a single time step [5]. An example of a static
attack detector is the residual-based bad measurement detec-
tor used in power system state estimation [4]. As the authors
of [4] and [5] show, any attack that satisfies Da(k) ∈ R(C),
where R(C) is the range space of C, is undetectable to a
static detector.

A dynamic attack detector uses knowledge of the system
dynamics A to perform attack detection over multiple time
steps. We assume that dynamic attack detectors know the A
and C matrices and the system output y(k) exactly over all
time steps. That is, a dynamic attack detector uses the out-
put trajectory Y (T ) =

[
y(0)T y(1)T · · · y(T )T

]T
to determine whether or not a nonzero attack E(T ) =[
a(0)T a(1)T · · · a(T )T

]T
has occurred over the

time period 0, . . . , T . Specific implementations of dynamic
attack detectors are discussed in [10] and [11]. In [10], the
authors determine the types of attacks that are undetectable
in the presence of sensor and process noise, and, in [11], the

authors consider undetectable attacks against a residual based
dynamic detector.

In this paper, we study sensor attacks that are undetectable
or stealthy to any dynamic attack detector and do not assume
that the detector has any particular implementation. Accord-
ing to [5], a dynamically undetectable attack is one that causes
the system to have an output trajectory that corresponds to
the output trajectory of the system not under attack. Given
the system ΣK = (A,C,DK), the output trajectory Y (T ) is
exactly determined by the unknown initial state x(0) and the
unknown attack sequence E(T ). Specifically, we have

Y (T ) = OTx(0) + (IT+1 ⊗DK)E(T ), (3)

where IT+1 is the (T + 1)× (T + 1) identity matrix, ⊗ is the
Kronecker product, and OT is the extended system observ-
ability matrix,

OT =


C
CA

...
CAT

 . (4)

Reference [5] states that an attack E(T ) is dynamically unde-
tectable if and only if it satisfies

OTx(0) + (IT+1 ⊗DK)E(T ) = OTx′(0), (5)

where x(0) is the system’s initial state and x′(0) is an arbi-
trary state. The stealth of an attack E(T ) is not affected by
known inputs to the system (e.g., if the system in equation (1)
has actuator inputs u(k) such that x(k+1) = Ax(k)+Bu(k))
since the contribution of the input to the trajectory can be cal-
culated exactly. For this reason, without loss of generality, we
consider the system in equation (1) with no actuator inputs.

In [6] and [7], the authors present dynamic attack recon-
struction algorithms that use the system trajectory Y (T ) to
identify the attack set K and compute the attack sequence
E(T ). There are, however, certain attacks that are unrecover-
able, i.e., attacks that cannot be reconstructed, but are dynam-
ically detectable [5]. Reference [6] states that no unrecov-
erable attacks on s sensors exist against a system (A,C,DK)
with |K| = s if and only if |supp(Cv)| > 2s for all eigenvec-
tors v ofA, where supp(x) is the set of indices of the nonzero
components of x. The authors of [6] and [7] assume that the
attacker is restricted to attacking at most s sensors of the sys-
tem (A,C,DK) where |supp(Cv)| > 2s for all eigenvectors
v of A. We provide a result that states that no undetectable
attacks exist against (A,C,DK) with |K| = s if and only if
|supp(Cv)| > s, which means that there are attack sequences
that are not reconstructed by algorithms in [6] and [7] but are
detected by dynamic attack detectors.

2.3. Problem Definition

This paper studies the existence of dynamically undetectable
sparse sensor attacks over the time period 0, . . . , T against
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cyber-physical systems. Given a system ΣK = (A,C,DK)
as in equation (1), we provide a necessary and sufficient con-
dition on K and DK for the existence of a dynamically un-
detectable attack E(T ). Furthermore, we find the minimum
number of sensors that an attacker must attack in order to cre-
ate a dynamically undetectable attack.

3. UNDETECTABLE SENSOR ATTACKS

We consider a system ΣK = (A,C,DK) and provide nec-
essary and sufficient conditions for the existence of unde-
tectable sensor attack sequences. Specifically, we seek con-
ditions for the existence of attack sequences E(T ) against
ΣK that are undetectable over the time period 0, . . . , T with
T = n−1. In order to determine the existence of undetectable
attack sequences over any time period 0, . . . , T , it is sufficient
to examine the time period 0, . . . , n− 1.

Lemma 1. If there exists a sensor attack E(n − 1) against
the system ΣK = (A,C,DK) that is undetectable over the
time period 0, . . . , n − 1, then there exists a sensor attack
E(T ) that is undetectable over the time period 0, . . . , T for
any T = 0, 1, . . . .

Proof. The proof is omitted.

3.1. Strong Observability

We derive the conditions for the existence of undetectable at-
tacksE(n−1) against a system ΣK using the system’s strong
observability property. In this subsection, we review the def-
inition of a system’s weakly unobservable subspace and a
system’s strong observability presented in [8] and [12]. Let
ΣK = (A,C,DK). The input-unobservable subspace over k
steps for ΣK , Lk, is the space of all x ∈ Rn such that, for
the system ΣK with initial state x(0) = x, there exists an
input E(k − 1) so that the system output trajectory satisfies
Y (k − 1) = 0. That is, Lk is the subspace of all x ∈ Rn for
which there exists an attack sequence E(k − 1) that satisfies

Ok−1x+ (Ik ⊗DK)E(k − 1) = 0. (6)

The input unobservable subspacesL1,L2, . . . satisfyLk+1 ⊆
Lk for all k and Ln = Ln+j for all j [12]. The weakly unob-
servable subspace of a system ΣK , denoted as V(ΣK), is de-
fined as its input unobservable subspace over n steps,Ln [12].
We call a system ΣK strongly observable if its weakly un-
observable subspace is trivial, i.e., V(ΣK) = 0 [8]. Refer-
ences [8], [9], and [12] provide methods to calculate a sys-
tem’s weakly unobservable subspace.

3.2. Existence of Stealthy Sensor Attacks

The strong observability of a system ΣK determines the ex-
istence of sensor attacks E(n− 1) that are undetectable over
the time period 0, . . . , n− 1.

Theorem 1 (Existence of Undetectable Sensor Attacks).
There exists a sensor attack E(n− 1) against the system ΣK
that is undetectable over the time period 0, . . . , n − 1 if and
only if ΣK is not strongly observable.

Proof. (If) Let ΣK be a system that is not strongly observable.
By definition of strong observability, V (ΣK) 6= 0. Let θ ∈
V (ΣK), θ 6= 0. We decompose θ into the sum of the system
initial state x(0) and another state −x′(0), i.e., θ = x(0) −
x′(0). Since θ ∈ V (ΣK), there exists E(n− 1) that satisfies

On−1θ + (In ⊗DK)E(n− 1) = 0. (7)

Substituting for θ = x(0) − x′(0) and rearranging equa-
tion (7), we have

On−1x(0) + (In ⊗DK)E(n− 1) = On−1x′(0), (8)

which shows that there exists a sensor attackE(n−1) against
ΣK that is undetectable over the time period 0, . . . , n− 1.

(Only If) Let E(n − 1) be a nonzero undetectable sensor
attack against ΣK . Let x(0) be the initial state of ΣK . Then,
there exists x′(0) ∈ Rn such that equation (8) is satisfied.
Let θ = x(0) − x′(0). Rearranging equation (8) and substi-
tuting for θ gives equation (7). Since there exists E(n − 1)
such that θ and E(n − 1) satisfy (7), we have θ ∈ V (ΣK).
What remains is to show that θ 6= 0. Because DK is in-
jective, so is In ⊗DK , and because E(n − 1) 6= 0, we have
(In ⊗DK)E(n−1) 6= 0. In order to satisfy equation (7), we
then have On−1θ 6= 0, which shows that θ 6= 0. Thus, there
exists a nonzero θ that belongs to the subspace, V (ΣK), and
by definition, the system ΣK is not strongly observable.

Reference [8] gives an equivalent condition for sys-
tem strong observability: a system ΣK = (A,C,DK)
is strongly observable if and only if the system ΣK,F =
(A,C +DKF,DK) is observable for all F ∈ Cs×n. This
property provides a necessary and sufficient condition on
DK such that there exists an undetectable attack against
ΣK = (A,C,DK).

Theorem 2 (Undetectable Attack Sets). An undetectable at-
tack E(n− 1) against ΣK exists if and only if there exists an
eigenvector v of A for which Cv ∈ R (DK), where R (DK)
is the range space of DK .

The proof of Theorem 2 requires the Popov-Belevitch-
Hautus (PBH) criterion for observability: the system ΣK =

(A,C,DK) is observable if and only if the matrix
[
A− λI
C

]
has full rank (i.e. rank n) for all λ ∈ C [13].

Proof. (If) Let v0 be an eigenvector of A with eigenvalue λ0
such that Cv0 ∈ R (DK). Then there exists θ ∈ Rs such that
DKθ = −Cv0, and there exists F ∈ Cs×n such that Fv0 =

θ. For such a choice of F , we have
[

A− λ0I
C +DKF

]
v0 = 0,
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which means that the system ΣK,F = (A,C +DKF,DK)
does not satisfy the PBH criterion for observability. Since
there exists F ∈ Cs×n for which ΣK,F is not observable, ΣK
is not strongly observable, and by Theorem 1, there exists an
undetectable sensor attack E(n− 1) against ΣK .

(Only If) Let there be an undetectable attack E(n − 1)
against ΣK . Then, by Theorem 1, ΣK is not strongly observ-
able, and there exists F ∈ Cs×n such that ΣK,F is not observ-
able. Applying the PBH criterion for observability to ΣK,F ,
we have that there exists λ0 ∈ C and v0 ∈ Cn\{0} such that[

A− λ0I
C +DKF

]
v0 = 0. Thus we have (A− λ0I) v0 = 0,

which shows that v0 is an eigenvector of A, and Cv0 = DKθ
for θ = −Fv0, which shows that Cv0 ∈ R (DK).

Theorem 2 is in the spirit of the result provided in [10]. The
result presented in this paper differs from the result in [10] in
that we derive Theorem 2 by explicitly connecting the exis-
tence of undetectable attacks to the strong observability prop-
erty. One advantage of the strong observability framework is
that it is a more general framework that can be extended to
apply to systems in which both the sensors and actuators fall
under attack.

Using Theorem 2, we provide an index s0 that specifies
the minimum number of sensors an attacker must attack in
order to be undetectable:

s0 = min
v∈Cn\{0},Av=λv

|supp(Cv)| . (9)

Theorem 3 (Smallest Attack Set). There exist an unde-
tectable attack on s sensors if and only if s ≥ s0.

Proof. The proof is omitted and provided elsewhere.

Calculating s0 is combinatorial for a general A matrix and is
infeasible for a large number of sensors p. If, however, the
matrix A is simple, one calculates s0 by computing s0i =
|supp(Cvi)| for each eigenvector vi of A (there are n eigen-
vectors) and finding the minimum amongst the s0i values
(there are n s0i values). Theorem 3 states that attacking at
least s0 sensors is a necessary but insufficient condition for a
sensor attack to be undetectable. An attack set K with cardi-
nality |K| ≥ s0 and associated matrix DK must still satisfy
the condition in Theorem 2 to have an undetectable attack.

The index s0 and Theorem 3 provide sensor design guide-
lines to improve the resilience of the system to sparse sensor
attacks. Given the system dynamics matrix A, one examines
supp(Cv) for all eigenvectors v of A and constructs the sens-
ing matrix C to ensure that all attacks whose sparsity falls be-
low a certain threshold are detectable. Placing additional sen-
sors into a system is equivalent to concatenating rows to the
system sensing matrixC. The choice of sensor determines the
nonzero components of the row, and by proper sensor place-
ment, one increases s0 and improves the system resilience to
sensor attacks.

4. NUMERICAL EXAMPLE

To illustrate our results, we provide numerical example of a
sensor attack against a cyber-physical system. The example
uses the dynamics of the Quadruple-Tank Process from [11]
and [14]. The system consists of four interconnected water
tanks equipped with sensors to measure the height of the wa-
ter in each tank. Following [11], the dynamics matrix of the
system is as follows:

A =


0.975 0 0.042 0

0 0.977 0 0.044
0 0 0.958 0
0 0 0 .956

 . (10)

We let the system have the following sensing matrx:

C =
[
I4 I4

]T
. (11)

The minimum value of |supp(Cv)| is achieved by two eigen-
vectors of A. The vectors e1 and e2 (ei is the ith canonical
vector in R4) are eigenvectors of A and the resulting value
of s0 is s0 = 2. Any sensor attack on a single sensor is de-
tectable. LetK = {1, 5}, K̂ = {3, 7}, andDK andDK̂ be as
defined in equation (2). The matrixDK satisfies the condition
in Theorem 2 since Ce1 ∈ R (DK), so there exists an unde-
tectable attack against the system ΣK = (A,C,DK). One
particular undetectable attack sequence against ΣK is a(k)
such that DKa(k) = α(.975)ke1, where α ∈ R determines
the magnitude of the attack and .975 is the eigenvalue asso-
ciated with e1. On the other hand, DK̂ does not satisfy the
condition in Theorem 2, so there is no undetectable attack
against the system ΣK̂ =

(
A,C,DK̂

)
. Finally, consider the

problem of adding two additional sensors to C to improve de-
tection resilience to attacks. If the additional sensors measure
states 1 and 2, the s0 index of the system increases to s0 = 3
and a dynamic detector can detect all attacks on two or fewer
sensors. While this is by no means a comprehensive algo-
rithm for sensor placement, the s0 index offers a quantitative
consideration of detector attack resilience in the design of the
sensing matrix C.

5. CONCLUSION

In this paper, we study the dynamic detection of sensor attacks
against cyber-physical systems. We relate the existence of dy-
namically undetectable sensor attacks to the system’s strong
observability, and we use properties of strong observability
to provide a necessary and sufficient condition for attack sets
to have undetectable sensor attacks. In addition, we provide
an index s0 that gives the minimum number of sensors an at-
tacker must attack in order to be undetectable. Finally, we
illustrate our results with a numerical example and demon-
strate a design guideline using the s0 index for improving the
system resiliency to sensor attacks.
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