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ABSTRACT

Jamming attacks are a class of network denial of servicekatthat
can easily be carried out in wireless networks. In order tatie
to repair a network in the presence of such attacks, it igalelsi to
identify the location of jammed nodes and the congested thaa
is affected by the jammer. In this paper, we propose the desfig
a Q-learning based attack-localization algorithm thantegrated
with the OLSR routing protocol. Our Q-learning attack-lization
algorithm is distributed, asynchronous and can identiéylttation
of the jammer in run-time as the attack takes place. We exathim
performance of our approach using NS3 network simulationeu
two different network topologies, and for both naive aneligent
attack scenarios.

Index Terms— Q-learning, jammer location, distributed, asyn-
chronous, peer-to-peer networks

1. INTRODUCTION

Wireless communications are easily be subjected to it at-
tacks that reduce the effectiveness of the network and @ pols
to reliably deliver data from a source to a destination. rfetence
attacks can be performed in many different ways, ranging femit-
ting a high energy interference signal, which degradesipalisyer
capabilities to decode modulated information, to the ititeral use
of MAC-layer congestion that prevents nodes from transngjtor
receiving [1]. One of the challenges that must be addresseqdsure
that networks can survive in the presence of malicious fietence
or congestion is to locate the jamming source [2, 3]. Oncddhe
cation of the adversary has been determined, then remedigben
applied to ensure the network can operate reliably. For plgrthe
location of an adversary may be fed to network layer (e.gtimgy
functions and used to alter routes in the network, or thetiocaf
an adversary may be used to adjust power or channel allos&to
network nodes near the adversary.

Localizing a moderately high-power interference source is
problem that has been relatively well-studied [4-9]. It o re-
alized, however, that an attacker need not apply large ataamfn
power to adversely impact the network’s performance. In, fac
small amount of transmit power being employed by a congestio
style interference source, which continually emits foroatnpliant
packets, can be quite effective at shutting down the MAG@iHay
functionality of neighboring nodes in a network. The imption of
this observation is that simple schemes, such as thosetibye
received signal strength (RSS), have limited ability toalecan
attacker. For such attacks, it is necessary to analyze tlextion
of network statisticscross the entire network in order to locate the
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adversary. These network statistics are dynasignals associated
with the network’s graph that provide forensic evidencearding
the adversary’s presence and must be cleverly leveragediéan o
locate the adversary.

In this paper, our goal is to localize the legitimate network
node(s) that are closest to the source of congestion, i.e.ath
tacker. Our approach operates in a distributed fashionjraadives
an online learning algorithm that has been tailored to logaa
congestion-style adversary in run-time. Specifically, \aeehmodi-
fied the well-known Q-learning algorithm, and the advansagfeour
method are: (1) the algorithm is distributed (Q-learningsriocally
at each network node, each node only needs to know netwdik-sta
tics for itself and its one-hop neighbors); and (2) the &tbar is
asynchronous and can converge even if some data availabliess
ing or old (as long as the obsolete information eventuallyiskes
with time).

The paper is organized as follows: In Section 2, we provide an
overview of our problem and the network scenario. In Sec8pn
we briefly overview Q-learning and then describe how Q-learn
was integrated with a routing protocol to support networlefsics,
including detection and isolation of the jamming attack. ket
analyze the performance of our jamming localization atharmiin
Section 4 through simulations involving different attackeodels.

In Section 5 we summarize related work, and conclude therpape
Section 6.

2. PROBLEM OVERVIEW

In this section, we describe the basic problem that we arsidering
by introducing the network scenario and the adversary’saiteris-
tics. We consider a network that consists of nodes that canuate
via wireless communications with each other. Depending an p
rameters, such as transmission power and modulation fpeaah
node might only be able to observe communications from aéiehi
amount of the full set of nodes. Our network, thus, will beaaged
as a graph where the vertices correspond to wireless nodgshe
edges correspond to wireless links connecting nodes taatinin
radio range of each other. In our study, we have used twordifte
motivating topologies: a regular grid deployment, and daepent
where the nodes are randomly placed. We illustrate thestoado-
gies in Figure 1.

Complementing the topological configuration of the network
it is necessary to employ an appropriate networking protticat
manages the routing of communication between nodes in the ne
work. In our study, we have chosen to use the OLSR routing pro-
tocol [10] at the network layer, while we employed an 802.1AQ/
with RTS/CTS turned off.
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Fig. 1. Grid and random topologies, red nodes are legitimate mem-

bers. Green is the attacker, which broadcasts valid patietar-
roundings.

Our objective is to develop a network forensics tool thaates
of a “jamming” node that is attacking the network. Specificalur
attacker is a congestion-style jammer thatinuously broadcasts
format-compliant packets, which results in the loss oftlewite traf-
fic (packets from other nodes). In particular, for victim eedi.e.
nodes near the jammer), the attack has two immediate coaseest
(1) the drop of legitimate packets at the physical and/or Mayer
of a legitimate node; (2) the increased proportion of totaitool
messages to data packets in the network as the routing ptotarst
send out more control messages to maintain its connectivithis
study, we assume that the malicious attacker is targetipgd@ftc le-
gitimate node, and hence that node will experience moreadegjon
than other nodes. In this study, we will also consider twdatams
of this attacker: a naive jammer who simply injects blockpagk-
ets, and an intelligent jammer who has infiltrated the neitvwaord
sends blocking packets as well as false information intoatiteck
localization algorithm. For the intelligent jammer, théaaker is an
insider to the network and can announce format-compliasages
that will be interpreted as if he is a legitimate member ofrtaavork.

Detecting and isolating the attacker will require foreasipon
signals being created at each node that are associated etitiori
traffic statistics. We have adopted the use of Packet Loss(RaR),
which captures the proportion of packets at a receiving nodetal
packets arriving at a receiving node. The calculation of FlRased
on all packets transmitted by the network, including cdrarm data
packets. PLR is a readily available network statistic, beiwte that
other network statistics, such as delay, may also be agptepr

3. ATTACKER LOCALIZATION IN A NETWORK VIA
Q-LEARNING

3.1. Q-learning Preliminaries

Our approach to localizing an adversary in a network usesa-mo
fied version of Q-learning. The standard discounted Q-lagrwas
proposed by Watkins in [11], and an asynchronous and digé&ib
version presented in [12]. In Q-learning, the agent leamsgati-
mal policy from past experience by minimizing or maximizithge
expected total discounted reward. The agent first randohdpses
an available action from its action set, then it obtains amédiate
reward or penalty. This reward/penalty value will factotoircal-

1. Calculating @ value (policy evaluation)

Qri1(s,a) = (1—ae1)Qu(s,a) + arp1[R(s,a,8") +7e41Vi(s')]

~ @

if Qur1(s,a) < Vi(s)
Qi+1(s,0) = Qi1 (s, a) 2

else
Qut1(s,0) = a11Qera(s,a) + (1 — aip1)Vals)  (3)
2. Calculating V' value (policy improvement)

Vit1(s) = min Qe1a(s, a) 4
Aoptimal = AT Y HEH Qt+1 (Sv a) (5)

In our scheme, each wireless node will run its own Q-learning
algorithm, and the Q-values at a particular node will cqroesl to
the packet loss rates associated with the links betweennti
and each of its neighbors. The internal state within eacte’sa@-
learning algorithm will be an assessment aiich of its neighbors
that node believes to be in the direction of the attacker. With each
node in the network running its own Q-learning algorithre tol-
lection of assessments can be thought of as a collection gérén
pointing in the direction of the adversary, and thus the fatage of
the attacker localization algorithm is to collectively exae these
assessments to infer where the adversary is located. Baforeed-
ing to the specifics of our proposed Q-learning algorithm,note
that one of the advantages for using the Q-learning apprisattiat
the Q-value within the algorithm is a discounted, expect@der of
the PLR, and hence naturally incorporates data smoothimgitio
gate bursty PLR fluctuations that naturally arise in the afien of a
network.

3.2. Q-learning Integrated with Routing Protocol

Our approach to identifying the jammer location integra@s
learning with the underlying routing protocol. Routing fwrcols,
such as OLSR, include unused message fields in broadcasblcont
messages that may be utilized to convey additional infdondie-
tween nodes. Specifically, in order to support the dynamératon
of Q-learning at each node, we need the following informmatmbe
exchanged: a node’s ID; the time slot foavalue; the time slot
for aV value; V(self-ID); PLR; and the optimal action (i.e. a
decision as to which neighbor is in the direction of the jamme

Using the distributed Q-learning framework of [12], we mnte
grated Q-learning related messages into the routing prbtmcat-
taching them tdhel | o messages. These messages are propagated
to all one hop neighbors. When its neighbor receives those me
sages, it detaches the Q-learning messages and storesthesor:
responding/ table in reverse time order for the calculation of future
Q values. For each time slot, the calculation functio)dearning
is called, which searches the algivalue andV table to decide the
optimal action (i.e. decision) for next time slot. Pseudieéor the
procedure running on each node is as follows:

The receiving node stores the above information iltand
PLR lists. The newQ value was calculated iteratively by equa-
tions (1), (2) and (3) until it converged in each node. Basedur

culating the new@ value for the current state and action pair. The simulation experience, this process tak®&V) rounds, whereV

optimal action for the current state is collected by finding &ction
which achieves the minimum/maximum &f value among all the
state-action pairs. We use the Q learning formulas givea2it [

is the total number of nodes in the networks, and we are cilyren
working on a proof for this conjecture. The asynchronousuiea
of the form of Q-learning we employ is well-suited for conties
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Algorithm 1 function Q-learning
initialize Qo, Vo
get neighbors N from routing table
calculate newy;, oy
[*policy evaluation*/
for all N intime slottdo
searchQ;—1(s,a) in sel fQNTable
repeat
search availabl&” in neighborVCTable
until find one
calculateQ:(s, a)
sel fQNTable.push_-back(Q+(s,a))
if Q:(s,a) < min@ then
man = Qt(sv a’)
end if
recalculate cost (packet loss ratio)
end for
[*policy improvement*/
if every k time slotsthen
Vi = minQ
At optimal = argminaQ
end if

cases as it allows the old neighbBr value in equation (1) to re-
main (though obsolete) in case there is a loss of informatioing
transmission. Obsolete information can fade out with time t the

discount factory. As long as the attacked node can receive and senc

a little information out, other legitimate nodes can uélthis to find
the node nearest to the jammer.

Algorithm 2 function Sendpacket
if sel fQNTableis not emptythen
send{sel fV;, PLR:, ID,time stamp}
sendat,optimal
end if

Algorithm 3 function Receivepacket

neighborVCTable.push_back(Vi, PLRy)
if neighbour'sa; optimai i self idand self’s a; optimar IS NEigh-
bor idthen
if self’sV; < neighbor'sV; then
mark self as the target node
end if
end if

4. SIMULATION

bytes. In each time slot, thBL R was estimated and used to calcu-
late the internal rewards in our Q-function, while the at@values
were updated every 2 time units and were estimated in alulisdd
fashion by each node. Every 6 time units, thealues were updated
in a distributed manner. The learning rate was set to be hess1
and decreased with time. We conducted simulations undfereiift
scenarios: (1) there was no attack; (2) there was a naivekattg(3)
there was an intelligent attacker that introduced ldrgand @ val-
ues; and (4) there was an intelligent attacker who introdwgreall

V and @ values. These four scenarios were examined both in the
grid and random topologies.

(] 100 20 300 200 500 o 100 20 500 200 500
Dsance(meren) o ostancel (meter)

(b) attack without dirtyy”

100 200 300 0 500 o 100 20 500 200 500
Oisnce(mete) . Distancemeter)

(c) attack with large dirty (d) attack with small dirty”

Fig. 2 Jamming localization in the grid topology. Bold double-
arrow link indicates network belief that the jammer is bedwéhe
arrow endpoint nodes.

Fig. 2 provides the final optimal policies for each node inghid
network under the four scenarios mentioned above. For eagl n
in the figure, there is an arrow that points to the neighbor nbde
believesis in the direction of the attacker. We see that in all cases ou
Q-learning jammer-locator algorithm was able to find thacker,
or the closest node to the attacker. One interesting phemmiat
we observed is that the distribution bf-values exhibits increased
variance when the network is under attack, which intuiyivatcurs
because the attack disrupts the behavioral balance atbeigh
nodes in the network. We also examined the case of the random
topology. The results in Fig. 3 exhibit similar behavior e tase of
the grid topology.

Lastly, we note, as with any such detection scheme, our ap-
proach will experience difficulty in differentiating betese benign
causes of congestion (such as the convergence of manyraijl-t
flows) and the congestion introduced by an intentional jamrire

We evaluated our algorithm using the NS3 simulator with te 2 particular, it is possible to construct high-traffic flow easonverg-

node networks as presented in Fig.

1. We employed the OLSIhg at a specific node that will lead to significant packet ldas

routing protocol with an 802.11 MAC where RTS/CTS was turnedwhich case our algorithm identifies the network node closethe

off in MAC layer. In our simulations, the nodes were staticheT
duration for each simulation was 100 time units. In all cases
attacker begins to broadcast packets starting at time 2@a@mtchu-
ing until the end of the simulation. The attacker’s traffittpen was
created to follow a Poisson distribution with inter-artitiane, 0.09
time units, and the length of the attacker’s blocking paekas 95

worst region of benign congestion. Further, the ability af scheme

to identify and locate a jammer is tied to the inter-arrivald be-
tween the jammer’s emitted packets, and a jammer can avtéd-de
tion by increasing its inter-arrival time. Nonethelesspim experi-
ments, we have witnessed that even so, our Q-learning agploa
cates theregion around the jammer. One approach we are exploring
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Fig. 3. Jamming localization in the random topology.

integrating into our algorithm is a traffic-control methodheveby
nodes in the network adjust their outgoing traffic rate whenrtet-
work suspects there is a jammer present. Such adjustmeid vesu
duce the likelihood of congestion being falsely declareghasning

by our forensics algorithms.

5. RELATED WORK

To find the location of an attacker, or the node under attackni
portant and can serve as the basis for repairing the netW81pb].

Previous work on finding the area that is jammed [16-18] can be

classified into three categories. The first category inwlveasur-
ing the received signal strength and using propagation fhmadt®
estimate distance. For example, [19] utilized the varratd the
hearing range of a node under attack and its affected neigtbo
formulate equations from which the jammer can be localiZEide
second category obtain the jammer’s location by utilizinfpima-
tion about the geometric location of affected nodes. Thécajp
examples for this category are the conventional Centroichtion
(CL) [20], Weighted Centroid Localization (WCL) [21] andsitm-
proved versions, Virtual Force Iterative Localization (/3] and
Double Circle Localization (DCL) [22]. Unfortunately, bothe first
and second categories require the exact locations of neigtdales.
The third category, however, uses ttetative position of nodes in
the network, and one example of this category is [23], whisbsu
gradient descent to find the node with minimum Packet DeliRa-
tio (PDR). One unfortunate behavior of such an approachaisith
may be trapped in local minima during the searching procéks.
approach presented in this paper belongs to the third aagtegom-
pared to [23], our scheme is distributed and can be execntethi

time during an attack. Our algorithm can adapt to envirortalen

changes because nodes with historically large PLR can lisitesl/
when their PLR becomes small. In particular, @gearning ap-

proach bases its decision on the expected PLR and sum ofits di [9]

counted histories instead of instantaneous values, trusgtimal
decision is not easily subjected to the bursty nature of odtstatis-
tics, and consequently exhibits algorithmic stability.

6. CONCLUSION

In this paper, we examined the problem of locating the soafee
jamming or congestion attack against a wireless network.p¥e
posed integrating reinforcement learning (specificatig popular
Q-learning algorithm), with a network routing protocol toige at a
distributed forensics algorithm that processes signaisaated with
network statistics to infer the location of a jamming evertte net-
work signals we utilized were local estimates of packet Iagss

as made by each node in a network. Our algorithm was validated

through NS3 simulations under two different network topids,
and for both naive and intelligent attack scenarios. Ini@algr,
we found that our algorithm could reliably identify the Iticen of
an intelligent insider-attacker who both emits blockinghsts and
introduces false Q-learning information into the netwoéks part
of our ongoing work, we intend to explore adaptively tuning at-
tack localization algorithm according to dynamic condigawithin
the network, such as node mobility (both the network andkttes
mobility) as well as under varying network traffic conditon
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