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ABSTRACT

In this paper, we address physical layer security for amplify-and-
forward (AF) multi-antenna relay systems in the presence of multi-
ple eavesdroppers. A robust joint design of cooperative beamform-
ing (CB) and artificial noise (AN) is proposed with imperfect chan-
nel state information (CSI) of both the destination and the eavesdrop-
pers. We aim to maximize the worst-case secrecy rate subject to the
sum power and the per-antenna power constraints at the relay. Such
joint design problem is non-convex. By utilizing the semidefinite
relaxation (SDR) technique, S-procedure and the successive convex
approximation (SCA) algorithm, the original non-convex optimiza-
tion problem is recast into a series of semidefinite programs (SDPs)
which can be efficiently solved using interior-methods. Simulation
results are presented to verify the effectiveness of the proposed de-
sign.

Index Terms— Physical layer security, amplify-and-forward re-
laying, cooperative beamforming, artificial noise, secrecy rate

1. INTRODUCTION

As a complement to cryptographic methods on upper layers, physi-
cal layer security has been regarded as a promising technique to pro-
vide secure data communication. Recently, substantial research has
been dedicated toward improving the secrecy rate of various wire-
less communication systems [1], [2], among which the cooperative
relay system has attracted considerable attention [3]. The secrecy
rate maximization problem for the single-antenna relay systems has
been explored in [4-9]. And the secure transmission approaches for
multi-antenna relay systems have been investigated in [10-14].

In this paper, we focus on the robust joint design of coopera-
tive beamforming (CB) and artificial noise (AN) for amplify-and-
forward (AF) multi-antenna relay systems. The imperfect channel
state information (CSI) of both the destination and the eavesdrop-
pers is assumed to be available at the relay. The worst-case secrecy
rate is maximized by jointly optimizing the beamforming and AN
covariance matrices at the relay subject to the sum power and the
per-antenna power constraints. Even if the worst-case secrecy rate
maximization (WCSRM) problem is non-convex, we can find the
suboptimal solution using the semidefinite relaxation (SDR) tech-
nique [15], S-procedure [16], and the successive convex approxima-
tion (SCA) algorithm [17], [18].

This paper addresses the WCSRM problem for AF multi-
antenna relay systems. It is worthwhile to mention some related
works. In [8] and [9], the robust design for secure single-antenna
relay systems was investigated, while we consider the case with a
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multi-antenna relay. The works [10] and [11] considered a multi-
antenna relay scenario, but the method is only applicable for the
single eavesdropper case. Besides, it is assumed that only the CSI
of the eavesdropper(s) is imperfect in [8—11, 19]. Actually, the CSI
of the destination may be also imperfect, which is considered in
this paper. To the best of our knowledge, robust approaches to the
WCSRM problem for AF multi-antenna relay systems overheard by
multiple eavesdroppers are not available in the literature.

Notations: We use ®, ©, Iy and 11 to denote the Hadamard
product, Kronecker product, identity matrix of dimension /N and the
all-one column vector of dimension NN, respectively. D(q) repre-
sents a diagonal matrix with g on the main diagonal. Re(-) extracts
the real part of a complex variable. g=vec(Q) denotes a column
vector by stacking all the elements of Q and vec™"(q) is the inverse
operation of vec(Q) for recovering Q.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a two-hop AF relay system, which consists of one
source (Alice), one relay, one legitimate destination (Bob) and mul-
tiple eavesdroppers (Eves). All the nodes are equipped with a single
antenna, except that the relay is equipped with N (N > 2) anten-
nas. We assumed that the direct links between Alice and Bob as
well as Alice and Eves can be ignored due to the weak quality of the
channels. Alice intends to transmit confidential information to Bob
aided by the trusted relay, while keeping it secret from the Eves.

The whole information transmission includes two phases. In the
first phase, Alice transmits a symbol s with the average power Ps to
the relay. The received signal vector at the relay is

yr =fs+n,, ey

where f € C¥ represents the channel vector from Alice to the re-
lay; n, ~ CN(0,1) is the additive white Gaussian noise (AWGN)
vector received at the relay. In the second phase, the relay forwards
the signal multiplied by a beamforming matrix A € C¥*¥_ Con-
currently, the AN is transmitted for confusing the Eves. Hence, the
signal vector to be transmitted by the relay is xg = Afs+An, +v.
Here v ~ CN(0, X) is the artificial noise vector with 3 > 0 being
the AN covariance matrix.

According to the expression of x g, the sum power of all anten-
nas and the power of the nth antenna can be computed, respectively,
as

P, = Te(P. A7 AT 4 Ti(AAT) + T (D), (2a)
P, = el (P.AffPAY + AAY + B)e,, Vne N,  (2b)

where e, is a unit vector with the nth entry being one; and
N 2 {1,---,N}. Leth € CY and g € CV, Vk € K,
K = {1,---,K}, denote the channel vector from the relay to
Bob and the channel vector from the relay to the kth Eve, respec-
tively. Then the signals received at Bob and the kth Eve is expressed,
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respectively, as
= hHAfs—i—hHAnr—i—th—l—nb, (3a)
yr = gr Afs+ gl An, +gi'v+ng, Yk €K, (3b)

where n, ~ CN(0,1) and n, ~ CA(0, 1) are the AWGN terms at
the receivers. According to (3), the received signal-to-interference-
plus-noise ratios (SINRs) at Bob and the kth Eve are, respectively,

P,h Af|?
T = ; (4a)
1+ h#3h+ |h7TA|]?
Ps|gt Af|?
Ve = &i Af] ke k. (4b)

1+gi¥g, + gl Al

For the case of imperfect CSI, it is assumed that the relay has
perfect CSI from Alice to the relay, but knows only imperfect CSI
of both Bob and Eves. The worst-case ellipsoidal error model is
adopted to characterize the imperfect CSI. In this model, the actual
channel vectors of Bob and the kth Eve take the following forms

h=h+Ah, g, =8 +Agk, VkeK, (5)

where h and g, are the estimated channel vector from the relay to
Bob and to the kth Eve, respectively; Ah and Agy, represent the the
corresponding error vectors, which are assumed to be bounded in the
ellipsoidal uncertainty regions [20]

Ah € # 2 {Ah|AW" QAR < &7}, (6a)
Agk € Gr 2 {Agi|Agt QuAgr <ei}, VEEK, (6b)

where €, > 0 and €2; > O define the shapes of the uncertainty
regions; and €, > 0 and €, > 0 control the sizes of the uncertainty
regions.

In this paper, our objective is to maximize the worst-case secrecy
rate by jointly designing the beamforming matrix A and the AN
covariance matrix 3. According to [21], the WCSRM problem can
be formulated as

i L oe(1 Zog(1 + e }
g ming wmin o log(1+ ) = Ag;%xkgloﬂ + %)

st. Pr < Prax, Po < pn, VR EN,

O]
where Pr,q. and p,, are the sum power limit and the power limit of
the nth antenna at the relay, respectively; and log(-) represents the
base-2 logarithmic function.

3. ROBUST JOINT CB AND AN DESIGN

The problem (7) is non-convex, and it is intractable to get the global
optimal solution. In what follows, we will develop a suboptimal
design to handle the non-convex WCSRM problem (7) by using the
SDR, S-procedure and the SCA algorithm.

Substituting the expressions of P, and P, in (2) as well as the
expressions of 7 and . i in (4) into (7), we can obtain

max Ty — Te
A, X=0,1p,7e
s.t. min 110 (1+ P h7Af) ) >
 ARen2 BV T T nfsh 4 nEAR’ =Y
1 P |gi’ Af|?
max - log(1 + <re,Vk e K,
Agr€TL 2 g( 1+ g Egk + ||g A||2) -

Tr(P. AfEYAY + AA” +3) < Praa,

el (P ASETAT + AAT + Se, < pn, Vn e N,
®)

where 7, and r. are slack variables. Applying the matrix identi-
ties Tr((B” CDF) = vec(B)” (FT ® C)vec(D) and Tr(BC) =
Tr(CB), the problem (8) can be equivalently expressed as

max Ty — Te (%a)
a,x>=0,r,,re
all
B1a 27
.t >27" — 1 9b
St T TS h + afBaa © ’ ©b)
a
C1 ka 27,
<27 —1, Vke K, (9
Agk 69; 1+gl¥gr +alfCyra ©)
a Dla + Tr(E) S Pmaa:7 (9d)
aHDg,na + Tr(eneZE) < pn, Vn €N, (%e)

where a = vec(A); By = Pi(f* @ h)(f* @ h)7; B, = Iy ®
(hh"); C1 o = Pu(f" ® gu) (" @ gr)": Cop = In ® (grgf):
D) = (P f7 +1Iy) @ In; Do = (P 7 +1Ix) @ (eney)).
The problem (9) can be approximated by

max Ty — Te (10a)
a,3>0,rp,7e
Anﬁir%{aHB1a
€ 27,
.t >27 — 1 10b
s max 1 + h#3¥h +affBsa — ’ (106)
AheH
Amagé a Cl ra
8k k 27
<27 —1, Vke K, (10
mln 1+ glf¥g, + al’Cya ’ €K, (10
Agr€Gy
(9d), (9e). (10d)

Note that we have replaced the left-hand sides of constraints (9b)
and (9¢) with the corresponding lower bound in (10b) and the corre-
sponding upper bounds in (10c), respectively. The optimal objective
value of the problem (10) is a lower bound of the secrecy capacity.
Hence, the scheme is suboptimal.

3.1. Semidefinite Relaxation

To further simplify the problem, we reson to the SDR technique
[15]. Specifically, we define A = aa” and drop the non-convex
constraint Rank(A) = 1. Then the problem (10) can be relaxed into

~ max Ty — Te (11a)
A=0,3>0,7p,7e,

V1,V2,U1,U2

s.t. min Tr(B1A) > v, (11b)

AheH

max Tr(B2A) + h $h 4+ 1 < v, (11c)
AheH
R (11d)
V2

max Tr(Ci xA) <wui, Vk €K, (11e)
Agr €y

min Tr(CzxA) + g}, Egk +1>ue, VEE K, (11f)
AngQA
— < 2% 1, (11g)
u2
Tr(D1A) + Tr(E) < Pras, (11h)
Tr(D2,A) + Tr(enel 8) < pn, Vn e N, (11i)

where v1, vz, u1 and us are the introduced slack variables; (11b)-
(11d) are deduced from (10b); and (11e)-(11g) are deduced from
(10c). We can find that the constraints in (11h) and (11i) are convex
with respect to A and 3. Now, the difficulties in solving the problem
(11) lie in two points: one is the infinitely many constraints in (11b),

1733



(11c), (11e) and (11f), and the other is the non-convex constraints in
(11d) and (11g). In the following two subsections, we will handle
theses constraints which introduce the difficulties.

3.2. Robust Transformation of (11b), (11c), (11e) and (11f)

In this subsection, we will transform the infinitely many constraints
in (11b), (11c), (11e) and (11f) into tractable forms using the S-
procedure [16].
To proceed, we define the following notations:
FAf®1nc, A2 1y @1y,
h 2 Ah, Ah 2 AAh, h £ Ah =h + Ah,
8 = A8k, ABk = AAgy, 8 = Agr = 8k + Agk, Yk €K,
E2Iy® En, with Ey being an all-one N X N matrix.
First, we consider the constraint in (11b). It can be easily shown

that f* @h = f* ®h. Then, after some mathematical manipulations,
the left side of the inequality in (11b) can be written as

P.(f*@h)"A(f* @ h)
= P.(f"oh)”Af* ©h) = P.h"D()AD(f*)h
= Ah” T, Ah + 2Re(t} Ah) +

12)

where T, = P,ATD(F)AD(F)A .t = P,(F* o h)" AD(f)A,
t = P.(f*© H)HA(f'* ® h). According to (12), the constraint in
(11b) can be interpreted as the following implication:
AhTQ,Ah — €7 <0
= Ah”T;Ah + 2Re(t{ Ah) +t; — v; > 0.

By applying the S-procedure, the above implication in (13) can
be equivalently expressed as the following linear matrix inequality
(LMI):

13)

My + T t1
—
t{l —)\185 +t—v1| — 0, (14)
for some A1 > 0.
Next, we deal withv Qllc). It can be checked that the relation
Ixy ® (hh") = E ® (hh) holds true. Then, after some mathemat-

ical manipulations, the first term on the left hand side (LHS) of the
inequality in (11c) can be expressed as

Tr((Ly ® (hh™)) &)
=Tr((E® (hh'"))A) = h" (E© A)h
= Ah"(AT(E ® A)A)Ah + 2Re((b” (E ©
+h"(Eo A)h.
Besides, substituting the expression of h in (5) into the second term
on the LHS of the inequality in (11c), we can rewrite this term as
Ah” AR + 2Re(h” £ Ah) + h” Th. (16)
Based on (15) and (16), the constraint in (11¢) can be rewritten as
AhQ,Ah — £} <0,
= Ah"TyAh + 2Re(t5 Ah) + t2 < 0.
where To = AT(E® A)A + X, t = h(E© A)A + h’'s,

ty = W' (E®A)h+h" Sh—uvy+1. By applying the S-procedure,
the implication in (17) can be guaranteed by the following LMI:

A2y — T —t2
—tf —)\285 — t2

® A)A)Ah) (1

a7

=0, (18)

for some A2 > 0.
Using the similar method of dealing with (11b), the constraints
in (11e) can be equivalently expressed as
A3k — T3
*t:)},{k

—t3
2
—A3,k€k — L3,k + U1

= P.A"D ()AH( A,
= P(fog) Af o

=0,Vkek, (19

for some A3, > 0, where Tz = T
-~ H — -~
ti), = P(f* 0 gr) AD(f)A, tsx
gk)-
Following similar steps for handling (11c), the constraints in
(11f) is equivalent to
Mg,k + Ty
til

tak
“ A4 kEr +tag
for some A4, > 0, where Ty = T2 AT(EQA)A + 3t =

g (EOA)A 4D, tay = 8 (EO A)gr + & T8k —uz + 1.
Therefore, substituting (14), (18)-(20) into the problem (11), we
can get the following optimization problem:

=0, Vke L, (20)

max Th — Te (21a)
A>0,5>0,A>0,
ThsTe,V1,V2,U1,U2

s.t. (14), (18) — (20), (11h) and (11i), (21b)

(11d)and (11g), @lc)

where A £ [A1, A2, A3.1, ..., A3, 1, Aa 1, - - -, Aa, i ]. Obviously, the

constraints in (14), (18)-(20), (11h) and (11i) are all linear con-
straints. But the problem (21) is still non-convex due to the non-
convex constraint in (11d) and (11g) which are the remaining ob-
stacles in getting the solution. In the following subsection, we will
focus on handling the remaining non-convex constraints.

3.3. Approximation of (11d) and (11g)

Following the idea of [22], we will resort to the SCA algorithm [17]
to deal with these two non-convex constraints in (21c). By introduc-
ing slack variables, the problem (21) can be equivalently reformu-
lated as

_ max Ty — Te (22a)
Pty e

s.t. (14), (18) — (20), (11h)and (11i),  (22b)

vy > et (22¢)

vy < e, (22d)

2% 1 < "3, (22¢)

Tl — T2 > X3, (221)

up < e, (22g)

us > e, (22h)

2%re _ 1 > %S, (221)

r4 — x5 < T, (22j)

where x 2 [z1,...,z6]; (22¢)-(22f) and (22g)-(22j) are deduced
from (11d) and (11g), respectively. It can be verified that the in-
equality constraints in (22¢)-(22j) are active at the optimal points by
contradiction. Hence, the problem (22) are equivalent to the problem
210n.

It is clear that the constraints in (22d), (22e), (22g) and (22i)
are non-convex. However, we find that the functions e”2, €3, e®4
and 2"¢ — 1 are convex. Similar to [22], the first order Taylor series
approximation can be used as the linear lower bounds of these func-
tions. By exploiting the idea of SCA [17], [22], in the ith iteration,
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the constraints in (22d), (22e), (22g) and (22i) can be replaced with
the following linear constraints, respectively

vy < €2 (zg — Zo[i] + 1), (23)
220 — 1 < ™l (g — 23[i] 4+ 1), (24)
uy < €™y — z4fi] + 1), (25)
27l ((re — Feli]) Ind 4+ 1) — 1 > €, (26)

where T2[i], Z3[i], Z4[i] and 7.[i] are the optimal values of z2, x3,
x4 and 7. , respectively, in the (¢ — 1)th iteration.

Based on the discussions above, the solution to the problem (21)
can be iteratively obtained by solving the following convex approxi-
mate problem:

max

A>0,>0,2>0,
ThiTe,V1,02,U1,U2,X

s.t. (14), (18) — (20), (11h), (11i),
(22¢), (22f), (22h), (22j) and (23) — (26).

The problem (27) is a convex SDP which can be efficiently solved by
available softwares, e.g., CVX [23]. Now, the SCA based algorithm
for solving the problem (11) is summarized in Algorithm 1.

s — Te

@7

Algorithm 1 SCA based algorithm for solving the problem (11)

1: Initialization: set ¢ = 0, find arbitrary Z2[i], Z3[t], T[]
and 7. [¢] that are feasible to the problem (27);
2:  repeat
3: solve the problem (27);
let (z3,x3,2x4,7r.) represent the optimal values of
(x2, 3, T4, Te);
4: set (Z2li + 1), Z3[i + 1], Za[i + 1),7efi + 1)) =
(x5, 25,25, r))and ¢ : =i + 1;
5:  ultil the stopping criterion is met or the iteration number
reaches the maximum value;
6: output: A* X%,

Note that if the optimal solution A* of the problem (11) is of
rank one, a suboptimal beamforming matrix A* of the problem (7)
can be obtained by A* = vec™ ' (aopt) with A* = agpal,. If
the rank of A* is larger than one, the Gaussian randomization pro-
cedure [15] can be used to get a rank-one approximate solution of
the problem (11). Then, an approximated suboptimal beamforming
matrix of the problem (7) can be constructed.

Proposition 1. Let R,[i] denote the optimal objective value of the
problem (27) in the 4th iteration. Then the sequence { R[]} con-
verges. Further, each limit point is a Karush-Kuhn-Tucker (KKT)
point of the problem (11).

Proof: Proof is omitted due to space limitation, but it can be proved
following the arguments presented in [17] and [22]. | |

4. SIMULATION RESULTS

In this section, simulation results are presented to evaluate the per-
formance and the convergence behaviors of the proposed joint CB
and AN design based on Algorithm 1. In the simulations, the chan-
nel coefficients are independently generated following the complex
Gaussian distribution with zero-mean and unit covariance. We set
N =4,K =3, P; = 20dB, p,, = Praa/N,Vn € N, &;, = &,
Vk € K. The convex optimization problem (27) is solved using the

;

—e—e§=0,s§=0

—8—¢2=005,¢=0.1
b e

—a—2=01,62=01
o

2_ 2 _
—6—g =016 =02

Worst-case secrecy rate (bits/s/Hz)

05
0

i i i i i
5 10 15 20 25 30
Sum power limit P__ (dB)
max

Fig. 1. Worst-case secrecy rate versus the sum power limit at the
relay with N = 4, K = 3 and Ps = 20dB.

36
34 f

2 _ 2 _
32f —0—g,=0,5=0

—a—¢2=005,62=0.1
e 4

—a—e2=01,e2=0.1
e
28}

—o—2=01,62=02 |

26 P = S DU~ S S

1

Worst-case secrecy rate (bits/s/Hz)

i i i
9 11 13 15
Iteration index

Fig. 2. Worst-case secrecy rate versus versus iteration index with
N =4, K = 3, Pyq, = 20dB and Ps = 20dB.

CVX [23]. Each curve is obtained by averaging over 100 indepen-
dent channel realizations.

Fig. 1 plots the worst-case secrecy rate of the proposed design
against the sum power limit P, for different €7 and e2. As ex-
pected, for a given sum power limit P,q., the worst-case secrecy
rate decreases with the increases of €7 and £2. In addition, it can be
observed that the worst-case secrecy rate is very sensitive to 7 and
2 at higher values of the sum power limit Py,qz.

In Fig. 2, the convergence behaviors of Algorithm 1 is illustrated
with Prqe = 20 dB for different channel error bounds &2 and £2.
We can see that the proposed algorithm converges within a few steps,
and is independent of channel error bounds.

5. CONCLUSIONS

In this paper, we considered the joint optimization of CB and AN
for AF multi-antenna AF relay systems with imperfect CSI of both
the destination and the eavesdroppers. While the WCSRM problem
is non-convex, it could be handled based on the SDR technique, S-
procedure and the SCA algorithm. As a future direction, it would be
interesting to extend the proposed method to solve a robust design
problem for the scenario where the CSI between the source and the
relay is also imperfect.
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