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ABSTRACT

We propose a spatio-temporal rich model of motion vector
planes as a part of a full steganalytic system against motion
vector based steganography. Superior detection accuracy of
the rich model over the previous methods has been lately
demonstrated for digital images in both spatial and DCT do-
main. It has not been heretofore used for detection of motion
vector steganography. We also introduced a transformation
so as to extend the feature set with temporal residuals. We
carried out the tests along with most recent motion vector
steganalysis and steganography methods. Test results show
that the proposed model delivers an outstanding performance
compared to the previous methods.

Index Terms— video, steganalysis, motion vector, rich
model

1. INTRODUCTION

As a traditional steganalysis approach, motion vector ste-
ganalysis methods start with adapting a video model within
which steganalyzers are built using machine learning tools.
Most of the motion vector (MV) steganalysis algorithms can
be considered as a targeted steganalysis, exploiting aberra-
tions introduced by a specific MV steganographic method.
This was a common approach in the image side. However,
there has been remarkable developments in image steganal-
ysis, yet, MV steganalysis studies appear indifferent to the
advancements1. There is an paradigm shift in image ste-
ganalysis towards employing many weak features rather
than attempting to model low dimensional representation
of the image. Detection success rate and flexibility of the
framework of recently published steganalysis algorithm [4,5]
commanded attentions of researchers in the field of digital
forensic. As the authors stated in [4, 5] that the idea can be
applied to wide range of applications such as sound or video
steganalysis, yet, it has not been tested in MV steganaly-
sis studies. In Spatial Rich Model (SRM) method, noise is
modelled as union of many diverse submodels formed by
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1The only exception to this is that [1, 2] are inspired by [3]

joint distributions of noise residuals obtained from many lin-
ear and non-linear high-pass filters. It employs ensemble
classifier as final steganalyzer because of its low computa-
tional complexity. This is achieved by merging many smaller
submodels and training them with a fast learning algorithm.

In this paper, we adapt the rich model to MV steganalysis
and introduce a novel transformation so as to apply rich model
filters to videos in temporal domain as well. We doubled the
number of features by appending temporal features to spatial
features. Test results illustrate that the proposed method out-
performs the prominent motion based steganalysis methods
(e.g. AoSO [6]) against a diverse set of stego videos. In addi-
tion, the test section of this paper has the most comprehensive
comparison in the field of MV steganalysis, according to our
best knowledge.

The paper is structured as follows. In Section 2 we give
some background information about previous methods. The
methodology to adapt the rich model to MV steganalysis and
explanation of temporal to spatial transformation appears in
Section 3. The experimental settings and discussions are de-
tailed in Section 4. Lastly, in Section 5 we summarize the
proposed work and stress the advantage of it.

2. RELATION TO PRIOR WORK

The contribution of the paper over previous works [4,5,7] is at
least three-folds : 1) Work by Kodovsky and Fridrich [4, 5, 7]
considers only spatial or DCT domain, which are both in 2D.
Unlike images, video has temporal data as well. We take tem-
poral correlation into account as well as spatial correlation
which provides a better detection accuracy in video; 2) Pre-
vious MV steganalysis methods have proposed ad hoc meth-
ods [1, 2, 6, 8–12]. We show that actually image steganal-
ysis methods could give a better performance with help of
some modifications. 3) The paper presents the most compre-
hensive cross comparison among MV steganalysis studies. It
gives a clear view of superiorities and drawbacks of both MV
steganography and steganalysis methods.

Currently, there are limited number of MV steganogra-
phy [13–20] and MV steganalysis algorithms [1, 2, 6, 8–12].

The very first MV steganalysis algorithm [1] and the fol-
lowing [2, 8] investigate the first order statistics of corrup-
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tions caused by LSB embedding and models steganography
as a noise added on MV magnitudes. Cao et al. states that
expected values of MVs of recompressed video are equal to
that of the cover video [9]. By using this fact, their method
utilises distance between MVs of videos before and after re-
compression. Motion estimation is unknown to steganalyzer
in a realistic scenario. It is stated in [6] that Cao’s method
suffers if the motion estimation method of recompression is
different than that of the first compression. In [10], first a lost
MV recovery algorithm using polynomial kernel regression
on neighbouring eight MVs is proposed then the algorithm is
employed for estimation of the cover MVs. A targeted MV
steganalysis for LSB steganography is proposed by Tasdemir
et al. [11]. It is stated that flat areas, which are common in
MV patterns, are highly corrupted by LSB embedding and
supported by a theoretical proof. The most recent MV ste-
ganalysis algorithm AoSO [6] perform a local motion estima-
tion with search window width one pixel. It is reported that
if the new MV is same as the received MV, then it is more
likely to be a clean video. It is more likely to be a stego if
the opposite is the case. It is not stated if half pel or full pel
resolution used in the paper. We took the half pel resolution
in our AoSO implementation since it is the most common op-
tion in real scenarios. AoSO has several pitfalls. It can not
be used against phase modifying MV stego methods because
they search MV in a different region. Hence, the new MV is
always the locally optimal MV. Another problem is with bi-
directionally estimated MVs. Their aggregate residual error is
minimum rather than individual residual errors. Hence, they
might not be locally optimal MVs individually.

3. RICH MODEL IN MOTION VECTOR DOMAIN

Each macroblock has MVs with x and y components. If
the macroblock is of type B, it has four components, i.e.,
x and y for both backward and forward predicted MVs. In
our method, we exploit the relations of MV components
of the same type as it is a common way which was also
used before [2, 8]. One reason for this is that the reference
frame distance affects MV magnitudes [21, 22]. We are go-
ing to group MVs of same prediction type, direction and
extract features from the each group separately. Thus, it
would be useful to introduce a new term here. We name
each MV matrices of same prediction type, same compo-
nent and same frame as MV plane. For example, a typical
B frame would have four MV planes (forward predicted
x and y components, backward predicted x and y compo-
nents). Let V ∈ {−W, . . . ,W} represent a MV component
where W is the search window width in ME. Then, we de-
note MV = (MVi,j,k) ⊆ {∪c∈{x,y},d∈{f,b}V (c,d)}M×N
where x and y are cartesian components of the vector, f
and b are abbreviations for forward prediction and backward
prediction, which are indicating the type of motion estima-
tion direction. M and N represents row and column size

of 2D macroblock array in a frame. MV plane is 2D ma-
trix slice of MV at a specific frame, type and coordinate,
V

(c1,d1)
k1

= (V c=c1,d=d1

i,j,k=k1
) ∈ {−W, . . . ,W}M×N .

We presently modify SRM algorithm, which is applicable
to 2D data, to meet 3D MV patterns. For the detailed descrip-
tions of the following definitions the reader is referred to the
original paper [4].

The filters of rich models are only applicable in 2D. 2D
SRM high-pass filters are not suitable for multidimensional
MV pattern of a frame. A typical B frame would have four
MV planes. There are two ways to alleviate this problem.
First, one can reduce the dimension by a transformation. Sec-
ond way is to apply SRM on MV planes, V(c1,d1)

k1
individ-

ually. If the latter approach is considered, the features will
correspond to a MV plane rather than a whole frame. That
means a frame could possess half cover half stego MV pat-
tern, e.g., abscissas of MVs might be stego where ordinates
of the MVs are cover. Latter approach is more compelling be-
cause most of the MV steganography algorithms embed into
only one component of a MV and leave the other untouched.
Therefore, the image Xij ∈ Rn1×n2 in SRM ( [4]) is replaced
with MV plane V

(c1,d1)
i,j,k1

∈ {−W, . . . ,W}M×N as follows:

Rij = V̂ij(Nij)− cV
(c1,d1)
i,j,k1

(1)

where V̂ij(.) is a predictor of cV (c1,d1)
i,j,k1

using neighborhood of

V
(c1,d1)
i,j,k1

. Rest of SRM algorithm does not require any mod-
ification for spatial feature extraction (q and T are taken as
{1, 1.5, 2} and 2 as in [4]). However, in order to exploit the
temporal correlation of MVs, a new transformation from a 3D
temporally cascaded MV planes matrices to a 2D MV planes
matrix is introduced. As shown in Fig. 1a, first three MV
planes corresponding to three consequent frames of the same
type are grouped together. The current frame is the one in the
middle because the previous and the following frames are the
most related ones to the current frame. We considered only
the previous and the next frame but one can extend the tem-
poral group size. First, we take first column of the previous
MV plane, V (c1,d1)

i,j,k1−1, i = 1, . . . ,M j = 1, and append the first

column of current MV plane, V (c1,d1)
i,j,k1

, i = 1, . . . ,M j = 1,
and append the first and second column of next MV plane,
V

(c1,d1)
i,j,k1+1, i = 1, . . . ,M j = 1, 2, as in Fig. 1b. We pick up

the columns as we temporally go back and forth. This pro-
cess resembles unfolding of an accordion so that it is named
as accordion folding. The benefit of this transformation is
rich model filters can exploit the correlation of not only tem-
porally collocated MVs but also neighboring collocated MVs
in the next or previous frames. For example, as demonstrated
in Fig. 1b, a 4th degree filter can examine the relation between
V

(c1,d1)
i,j,k1

, i = 3 j = 1 and V
(c1,d1)
i,j,k1+1, i = 7 j = 2. This simple

transformation gives a surprising amount of extra accuracy in
test results.
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In Section4, we test both spatial only and spatio-temporal
SRM steganalysis results.

(a) (b)

Fig. 1. Accordion unfolding. a) three consequent MV planes are
concatenated to form a 3D matrix b)3D to 2D transformation by ac-
cordion unfolding.

After unfolding the MV plane group, SRM method is em-
ployed. Note that SRM is employed to both abscissas (V (x,d)

i,j,k )

and to the ordinates (V (y,d)
i,j,k ) of the MVs separately since one

of them might be clean where the other is carrying a mes-
sage. Our final feature set has (34671 + 34671) = 69342 as
it includes spatial and temporal features.

4. EXPERIMENTS

The most recent MV steganalysis method AoSO [6] is imple-
mented as well as other three methods, namely, DengCom [2],
DengRec [10], Su [8]. Xu [15], Aly [19], He [17], Pan [18]
and Fang [16] are implemented for message embedding by
the help of an open source library [23]. Some steganalysis
methods above are only applicable to P frames only. If such
methods were being tested, IPPP GOP structure was used.
IBPBI GOP structure is used for the rest. 100 unique CIF
sized videos each contains 100 frames are encoded with the
same setting (i.e. One Mb/s bitrate, full MV search, no field
frames, progressive, 4:2:2 chroma subsampling ...) apart from
GOP type. The final data set was comprised of total 700 stego
and cover videos which makes 70000 frames2 on total. All
MV steganography algorithms allow user to choose threshold
rather than payload. Thus, in a realistic case a data set with a
predefined payload can not be built. Tests are carried out for a
realistic scenario and algorithms are not modified to meet our
test set. They are tested for ten different ranges of payloads.
Nevertheless, we slightly abuse the conventional meaning of
the term payload here because of the reasons we presently
elaborate on.

A unit is group of consequent frames of the same type.
The feature arrays of some steganalysis algorithms are ex-
tracted from a unit where each frame in it has different
payload. This makes it impossible to carry out a pairwise

2This big data set does not cause a curse of dimensionality because every
payload range is trained-tested separately.

comparison because of two reasons:
Firstly, some steganalysis algorithms give decision results in
frame or MV plane resolution whereas some others give the
results in unit resolution.
Secondly, it is unlikely to have a unit with full embedding
rate, where every MV component is carrying a message bit.
There would be many gaps in the comparison due to lack
of samples with all payloads. To overcome this problem,
we considered the maximum of total bits embedded by a
steganography method in a unit, which is defined by each
steganalysis differently, in our data set as the maximum pay-
load of the steganography method for that steganalysis. Then
the test set is divided into ten payload ranges from [0,0.1] to
[0.9,1].

Aly’s algorithm requires setting values for lower and up-
per limits of Prediction Error Frame (PEF). In our tests, they
are set to 15db and 60db respectively. Thresholds of other
embedding methods are set to 5 and number of regions are set
to 16, 16 and 8 for Pan, He and Fang respectively.

Test videos are generated using raw image sequences [24].
Each video has five stego and two cover versions, one with
IPPP and the other with IBPB GOP sequence. A randomly
generated secret message bit sequence is embedded to each
stego video. Half of the stego videos are used for training the
steganalytic systems and the other half is used for tests. If the
stego set of a steganalysis method has IPPP GOP sequence,
we trained and test it with the cover set which has IPPP GOP
sequence as well. IBPB is used otherwise. All settings of
training and testing were applied as explained in the steganal-
ysis papers.

All test results are shown in Fig. 2. Each data point in
this figure is the average of 10 train-test results. Each graph
shows the accuracy vs payload plots of all steganalysis algo-
rithms against a steganography algorithm given in the title of
the graph. Accuracy is calculated as:

PA = 1− (PF + PM ) (2)

where PA is accuracy, PF and PM are probability of false de-
tection and miss detection. We tested our proposed Accordion
Unfolding SRM (ASRM) with spatial only features (SRM
spatial) and spatial + temporal features together (ASRM spa-
tial+temporal) in order to observe the effects of temporal and
spatial features individually.

Fig. 2 shows that proposed ASRM method have better ac-
curacy against all steganography methods tested. It has an
outstanding detection accuracy especially against Xu’s and
Aly’s steganography methods. Temporal features give extra
around 5% accuracy in mid and high payloads, 20% in low
payloads against Aly and Xu. Still, temporal features improve
detection accuracy for other steganography methods as well.

Deng Rec, Su, AoSO and Deng Com steganalysis algo-
rithms follow ASRM spatio-temporal and SRM spatial meth-
ods in this order. However, when the payload is greater than
0.5, Su’s method has better accuracy than AoSO against Xu.
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(a) (b) (c)

(d) (e) (f) Legend

Fig. 2. Test results are given as comparison of all steganalytic systems against a selected stego algorithm. a) Xu, b) Aly, c) He, d) Pan, e)
Fang, f) legend for steganlaysis methods.

Cartesian coordinate was divided into 16 regions in Pan and
He, eight regions in Fang. Fig. 2e shows that extra eight re-
gions give more security against ASRM algorithm but coset
syndrome coding used in Pan Fig. 2d does not improve the
security of it.

The most degradation in MV patterns is caused by Aly’s
algorithm because it does not alter only the nonzero MVs but
also the zero MVs. Typically, MV patterns have wide regions
with zero MVs. These regions are readily detectable and un-
avoidable traps for Aly’s steganography. Xu’s method is com-
ing after Aly in terms of detectability. Test results also show
that phase based MV modification is safer against current ad-
versary methods than magnitude base steganographies.

Since we do not have control over payload directly, our
test and training set have different sizes at different payloads.
There are less samples in between 0.5 and 0.8 payload than
the rest. This is the reason why there is a drop in detection
accuracy of the steganalysis methods in that range.

AoSO did not perform better than previous steganalysis
methods. The reason is half pel resolution, which is more
usual, is used in motion estimation stage of our test set. Lo-
cally optimal MV search is bounded to a 3× 3 half pel sized
search box. Another reason is that it is only supposed to work
if the MV has not been changed more than one pel. Neverthe-
less, Pan, He and Fang methods rotate the MV much further
than one pel distance. Even the extensive modification makes
it conducive to be easily detected. This precludes AoSO from
discerning the abnormality. Hence, AoSO can not be used
against phase based MV steganography algorithms.

5. CONCLUSION

The purpose of the paper is to present a supervised univer-
sal MV steganalysis, which has the best detection accuracy
among previous methods.

Of late, there has been remarkable improvements in digi-
tal image steganalysis. Especially the rich model has drawn
researchers’ attention by virtue of its generic and flexible
framework. In this study, rich model is adapted for MV ste-
ganalysis. To the our best knowledge, this study is the first to
import an image steganalysis to the video side. Furthermore,
we introduced a novel temporal transformation so that rich
filters enjoy the benefits of temporal correlation of video. The
introduced simple 3D to 2D transformation to exploit both
spatial and temporal correlation in MV patterns gives an extra
5-20% accuracy.

The test section has the most comprehensive comparison
in the field of MV forensics. Five steganography algorithms
are tested against six adversary methods including the pro-
posed ASRM spatio-temporal method. The tests show that
overall detection accuracy of the proposed method is above
all other adversary methods. It has an outstanding detection
rate especially against Xu’s and Aly’s method.
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