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ABSTRACT

We study the problem of identifying a single infection source in
a network under the susceptible-infected-recovered-infected (SIRI)
model. We describe the infection model via a state-space model,
and utilizing a state propagation approach, we derive an algorithm
known as the heterogeneous infection spreading source (HISS) es-
timator, to infer the infection source. The HISS estimator uses the
observations of node states at a particular time, where the elapsed
time from the start of the infection is unknown. It is able to incor-
porate side information (if any) of the observed states of a subset of
nodes at different times, and of the prior probability of each infected
or recovered node to be the infection source. Simulation results sug-
gest that the HISS estimator outperforms the dynamic message pass-
ing and Jordan center estimators over a wide range of infection and
reinfection rates.

Index Terms— Infection source identification, SIRI model, side
information, regular tree, Facebook network

1. INTRODUCTION

Consider an infection, which can be a computer virus, disease or
rumor, spreading in a network of nodes. A node is said to be in
infected state if it “possesses” that infection [1, 2]. For example,
in the case of a rumor spreading in an online social network like
Facebook, an infected node is a user who has posted the rumor on
his social page in the recent past. A node is in susceptible state if
it has never been infected before, or in recovered state if it has re-
covered from an infection. In the Facebook example, a recovered
node corresponds to a user who has removed the rumor post or the
post is not within a predefined number of most recent postings of
the user. An infection follows a susceptible-infected (SI) model if
a susceptible node may become infected if it has infected neigh-
bors, and an infected node stays infected [3]. The infection has a
susceptible-infected-recovered (SIR) model if an infected node may
recover from an infection but then stays uninfected forever [3], and a
susceptible-infected-recovered-infected (SIRI) model if a recovered
node may again relapse into an infected state, i.e., it does not require
any infected neighbors to reinfect it [4,5]. In the Facebook example,
a user may repost a rumor after he has removed it due to influences
external to the Facebook network [6, 7]. The SIRI model reduces to
an SI or SIR model if the probability of recovery or reinfection is
equal to zero, respectively.

Suppose that after an unknown elapsed amount of time since the
start of an infection spreading, we have a snapshot of the states of a
subset of the network, and we want to identify the infection source
based on this snapshot and the network topology. This is known as
the network source identification problem, and has been extensively
studied under the SI and SIR models. Various source estimators such
as the distance (or rumor) center [1,2,8], Jordan center [6,9,10], dy-
namic message passing (DMP) estimator [11,12], belief propagation

(BP) estimator [12, 13], have been proposed and studied. Each of
these estimators seeks to find an approximate maximum likelihood,
maximum a posteriori (MAP), or most likely infection path estima-
tor of the true infection source, and may require different levels of
a priori information about the spreading process. For example, the
distance and Jordan center estimators do not require any knowledge
of the infection rates, which are utilized by DMP and BP estimators.

In this paper, we consider identifying a single infection source
in a network under the SIRI model, which is more general than the
SI and SIR models. The SIRI model is frequently used to describe
the transmission of a contagious disease with relapse, such as bovine
tuberculosis or human herpes virus, in which recovered individuals
may revert back to the infectious class due to reactivation of the la-
tent infection or incomplete treatment [4, 5, 14]. The model is also
used as a simplified version of general multi-strain models, where af-
ter an initial infection, immunity against one strain only gives partial
immunity against a genetically close mutant strain [15]. A further
example of SIRI type of infection spreading is rumor spreading in
an online social network, as alluded to earlier in the Facebook ex-
ample. It is thus of both practical and theoretical interest to consider
infection spreading and source identification in a network under the
SIRI model. However, the problem is more challenging than the one
under the SI and SIR models because a node may become infected
and recovered multiple times. Therefore, it is unclear if the infection
source estimators currently proposed in the literature can be applied
directly to the SIRI model, and if this will lead to significant perfor-
mance deterioration.

In this paper, we aim to find an approximate MAP estimator for
inferring the infection source under the SIRI model. Our estimator
is derived as a non-trivial extension of the DMP estimator, which
cannot be applied directly to the SIRI model because it violates the
assumption of unidirectional state transitions [16]. Our estimator
is also related to the revised version of DMP called DMPr in [13],
which is also applicable only to the SIR model. Furthermore, our
new estimator is able to incorporate side information such as the
prior probability of each candidate node being the infection source,
and additional observations on subsets of nodes in periods other than
the snapshot time. We call our new estimator the heterogeneous in-
fection spreading source (HISS) estimator for its applicability to a
network with nodes following different (i.e., SI, SIR and SIRI) in-
fection models. Simulations are performed on random regular tree
networks and a subset of Facebook network to evaluate the proposed
estimator and compare its performance with those of the Jordan cen-
ter estimator, and the DMP estimator. Our simulation results suggest
that the HISS estimator outperforms both the Jordan center and DMP
estimator over a wide range of infection and reinfection rates.

2. INFECTION MODEL AND ASSUMPTIONS

In this section, we characterize the SIRI infection spreading using
a state-space approach [17]. Throughout this paper, we assume a
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Fig. 1. Possible state transitions of a node under the SIRI model.

common underlying probability space with probability measure P.
We also use 0 : n to denote the integer set {0, 1, ..., n}.

Let the network over which the infection spreads be described
by a directed graph, (N , E), where N , 1 : N is the node set and
E is the edge set. A directed edge (l, k) exists from node l to node
k if node l can directly infect node k, in which case node l is said to
be an in-neighbor of node k, and conversely node k is said to be an
out-neighbor of node l. We denote the set of in-neighbors of a node
k asNk.

Suppose that there is a single node s∗ in the network that starts
the infection at time 0, and suppose that we observe the node states
of a set of nodes in the network at a particular time Tf , which we call
the snapshot time. We assume that Tf is unknown, and that time is
discretized into 0 : Tf . Let S, I , and R denote the susceptible, in-
fected, and recovered states, respectively. Let αlk be the probability
of an infected node l infecting an out-neighbor k within a time slot,
where αlk = 0 if l /∈ Nk. Let βk be the probability of an infected
node k to recover within a time slot, and γk be the probability of
a recovered node k to be infected again within a time slot, where
γk = 0 if βk = 0. These probabilities are assumed to be given or
have been inferred a priori. The possible state transitions of a node
are depicted in Fig. 1. It is evident that the infection process at node
k reduces to the SIR model if γk = 0, and the SI model if we further
have βk = 0. This admits a heterogeneous spreading model con-
taining different infection processes of SI, SIR and SIRI at different
nodes. Our model thus subsumes those studied in [1, 2, 9, 13, 16].
We assume that conditioned on the node states in time slot t− 1, all
node transitions in time slot t are independent of each other.

We use PS
k (t), P I

k (t) and PR
k (t) to denote the probabilities of

a node k ∈ N to be in states S, I and R at time t, respectively.
Adopting a state-space modeling approach, we define these three
probabilities as state variables. The infection model is then obtained
by describing the evolution of the three state variables in time using
difference equations. Using the state transitions for the SIRI model,
we have for all t ∈ 1 : Tf and k ∈ N ,

PS
k (t) = P

(
Ūk(t− 1) | Sk(t− 1)

)
· PS

k (t− 1), (1)

PR
k (t) = βkP

I
k (t− 1) + (1− γk)PR

k (t− 1), (2)

P I
k (t) = 1− PS

k (t)− PR
k (t), (3)

where Ūk(t−1) is the event that no in-neighbor passes the infection
to node k in during time t − 1 to t, and Sk(t − 1) is the event that
node k is in state S at time t − 1. By assuming that in-neighbors
pass infection to a node independently, and utilizing the mean-field
approximation, we have

P
(
Ūk(t− 1) | Sk(t− 1)

)
≈
∏
l∈Nk

(
1− αlkP

I|Sk(t−1)
l (t− 1)

)
,

(4)
where P I|Sk(t1)

l (t2) , P (Il(t2) | Sk(t1)) , for all t1, t2 ∈ 0 : Tf ,
which is the probability that node l is in state I at time t2 given that

node k is in state S at time t1. (Note that equation (4) is exact if the
graph (N , E) is acyclic.) To complete the model, we need to have
an explicit expression for P I|Sk(t−1)

l (t− 1).
To that end, we introduce two classes of auxiliary state variables.

For all t ∈ 0 : Tf , l ∈ Nk, k ∈ N , let θlk(t) be the the probability
of a node l not infecting its out-neighbor k up to time t, given that
node k is in state S at time t; and let φlk(t) be the probability of a
node l to be in state I at time t and not infecting its out-neighbor k
up to time t, given that node k is in state S at time t. Then it can be
shown that

P
I|Sk(t−1)
l (t− 1) =

φlk(t− 1)

θlk(t− 1)
, (5)

where θlk(t− 1) and φlk(t− 1) are updated by

θlk(t) =θlk(t− 1)− αlkφlk(t− 1), (6)
φlk(t) =(1− αlk)(1− βl)φlk(t− 1)

+
(
P

S|Sk(t−1)
l (t− 1)− PS|Sk(t)

l (t)
)

+ γlP
R|Sk(t−1)
l (t− 1), (7)

and the auxiliary conditional probabilities are computed from

P
S|Sk(t−1)
l (t− 1) =PS

l (0)
∏

j∈Nl\{k}

θjl(t− 1), (8)

P
R|Sk(t−1)
l (t− 1) =1− PS|Sk(t−1)

l (t− 1)− P I|Sk(t−1)
l (t− 1).

(9)

Compared to the DMP equations in [11], the new term at the end of
(7) arises from the reinfection of a recovered node, which is unique
to the SIRI infection model. This term is then computed by (9),
which further depends on the new equation (5) and equation (8).
The key equation (5) follows from an important observation:

PS
k (t) = PS

k (0)
∏
l∈Nk

θlk(t) = PS
k (t− 1)

∏
l∈Nk

θlk(t)

θlk(t− 1)

= PS
k (t− 1)

∏
l∈Nk

(
1− αlk

φlk(t− 1)

θlk(t− 1)

)
= PS

k (t− 1)
∏
l∈Nk

(
1− αlkP

I|Sk(t−1)
l (t− 1)

)
,

where the last equality follows from (1) and (4). We note that for a
directed acyclic graph, the above equations are exact, while we will
treat these as approximations for general network graphs.

We proceed to associate virtual observation equations with the
state dynamics. Let NS

t , N I
t and NR

t denote the sets of nodes
observed to be in states S, I and R at time t, respectively; and
NSR

t denote the set of nodes observed to be in an uninfected state
but are indistinguishable to be in state S or R at time t. The rest
of the nodes whose states are unknown or not observed are col-
lected into a set denoted by NSIR

t , i.e., NSIR
t = N\(NS

t ∪ N I
t ∪

NR
t ∪ NSR

t ). Stack the three states into a single vector as Pk(t) ,
[PS

k (t)P I
k (t)PR

k (t)]T . We define the virtual observations as

yk(t) = Ck(t)Pk(t), (10)

where the observation vectorCk(t) ∈ R1×3 takes one of the feasible
values: [1 0 0], if k ∈ NS

t ; [0 1 0], if k ∈ N I
t ; [0 0 1], if k ∈ NR

t ;
[1 0 1], if k ∈ NSR

t ; [1 1 1], if k ∈ NSIR
t . The last observation

vector corresponds to a null observation and is defined merely for
theoretical completeness.
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3. IDENTIFYING THE INFECTION SOURCE

We assume that at a particular observation snapshot time Tf , we
wish to infer the identity of the infection source. For each node k,
let Wk be the set of time slots during which the state of node k
is observed. The time slots in Wk are known only relative to the
unknown snapshot time Tf , which is to be inferred. For each t ∈
Wk, let Xk,t ∈ {S, I,R, SR} be the observed state of node k at
time t, where SR represents an observation state in which we are
unable to distinguish an uninfected state as either S or R. We lump
all observation times into a set T O = ∪k∈NWk. LetNO be the set
of all nodes with at least one observation up to the snapshot time.

We exclude all observed susceptible nodes whose in-neighbors
are also observed to be susceptible, because these nodes do not con-
tribute to the infection realization [12]. We use N ′ to denote the
full node set N with such uninformative nodes removed, and N ′k to
denote the neighbors of node k in the reduced graph for all k ∈ N ′.

LetN c be the set of nodes that have been observed to be in states
I , R, or SR at some observation time (i.e., the candidate sources).
Moreover, the prior probability of a candidate to be the infection
source is denoted by P I

k,0 for all k ∈ N c.
We formulate the source identification problem as an approxi-

mate MAP estimation of the infection source. Ideally, the true infec-
tion source and the true snapshot time should be estimated as

(ŝ, T̂f ) ∈ argmax
s∈Nc,Tf∈T c

P
(
s∗ = s,NO

)
, (11)

where T c is the set of candidate snapshot times, and P
(
s∗ = s,NO

)
is the joint probability of node s being the infection source s∗, and
NO being the given observations. By Bayes’ rule, the ideal estima-
tor is equivalent to maximizing P

(
NO | s∗ = s

)
P(s∗ = s). For

tractability, we approximate the joint probability P
(
NO | s∗ = s

)
by a mean-field probability

∏
k∈NO

∏
t∈Wk

P
Xk,t|Is(0)
k (t). As the

probabilities P
Xk,i|Is(0)
k (t) can be computed by iterating the infec-

tion model (1)-(10) for a given infection source s, this mean-field
probability can be computed and then used to compare different
candidate infection sources. Together with an approximate prior
P(s∗ = s), the estimator gives an approximate MAP estimation of
the infection source.

Therefore, the inference problem can be written in the following
optimization form:

(P0) max
Tf ,{P I

k
(0)}k∈Nc

∑
s∈Nc

P I
s (0)

∏
k∈NO

∏
t∈Wk

yk(t)

subject to (1)− (10),

PS
k (0) = 1− P I

k (0), ∀k ∈ N c, (12)

PS
k (0) = 1, ∀k ∈ N ′\N c, (13)

P I
k (0) = 0, ∀k ∈ N ′\N c, (14)

PR
k (0) = 0, ∀k ∈ N ′, (15)

θlk(0) = 1,∀l ∈ N ′k, k ∈ N ′, (16)

φlk(0) = P I
k (0), ∀l ∈ N ′k, k ∈ N ′, (17)∑

k∈Nc

P I
k (0) = 1,

Tf ∈ T c, P I
k (0) ∈ {0, 1}, ∀k ∈ N c,

where the infection model (1)-(10) is applied to a reduced graph
which excludes the aforementioned observed uninformative suscep-

tible nodes, and (12)-(17) specify the initial conditions of the infec-
tion model.

Note that the observation variables yk(t) in the objective func-
tion are expressed by state variables Pk(t) via (10), and that the
basic state variables Pk(t) and the auxiliary state variables θlk(t)
and φlk(t), for all t ≥ 0, l ∈ Nk and k ∈ N , are determined by
the decision variables P I

k (0) for all k ∈ N c via (1)-(10). There-
fore, the optimization essentially depends on the decision variables
{P I

k (0)}k∈Nc and Tf . We also note that Tf is larger than the
elapsed time between the time when the first side information is ob-
served and the snapshot time.

Because of the nonlinearities involved in the infection model (1)-
(10), it is difficult to solve (P0) by a standard optimization solver.
Nonetheless, it is straightforward to get a solution by enumerating
and comparing all feasible solutions of (P0). Given a candidate
source and a value of Tf , the algorithmic complexity of comput-
ing the objective function is O(dTf |N ′|), where d is the average
in-degree of the reduced graph. Since we need to enumerate all can-
didate values of Tf for all candidate sources, the overall algorithmic
complexity is then O(dTf |N ′||N c||T c|).

Our proposed inference process inherits the merit of the DMP
method, but it is able to incorporate available side information (if
any) and is applicable to a network consisting of nodes that follow
heterogeneous (namely, SI, SIR and SIRI ) infection models. For
this reason, we call this new estimator the HISS estimator for short.

Although the HISS estimator is derived by assuming that the
in-neighbors pass infections to a node independently (cf. (4)), we
can still apply it heuristically to a network where this assumption is
violated. We expect that the impact on the performance of the HISS
estimator to be small if the network is sparse or has weak correlations
between infections passed by neighboring nodes. We note that a
similar argument was used to explain the success of well-known BP
methods in general network [18].

4. PERFORMANCE EVALUATION VIA SIMULATIONS

We apply the proposed HISS estimator to infer single infection
sources in random regular tree networks and a subset of the Face-
book network under the SIRI model, and then compare the inference
results with those obtained with the DMP and Jordan centre (JC)
estimators. In applying the DMP estimator, we ignore the rein-
fection probability of a recovered node and hence naively treat the
SIRI model as an SIR model. In the simulations, we assume that
the snapshot time falls in the range [τ + 1, Tf + τ − 1], where Tf

is the actual elapsed time and τ is the elapsed time since the first
side information is observed till the snapshot observation time. In
simulations we set τ to Tf/2 if Tf is even and (Tf − 1)/2 if Tf is
odd. We assume uniform infection, recovery and reinfection rates at
all nodes in the network.

To compare the estimators, we adopt the following two metrics,
which are correlated to the likelihood of wrongly inferring the source
and the absolute inference error in distance, respectively:

• Normalized rank of s∗ [11, 12]: We first rank the candi-
date sources in descending order according to the objective
function value in (P0). The rank (≥ 1) of the true infection
source, subtracted by the ideal rank value of 1 (yielding the
rank error), and then divided by the total number of candidate
sources, gives in the desired normalized rank.

• Error distance of ŝ to s∗ [19]: We compute the length of the
shortest path from the source estimate ŝ to the true source s∗.
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Fig. 2. Comparison of estimators’ performance for random regular
tree networks. The percentage refers to the fraction of nodes, se-
lected at random at time Tf − τ , whose states are observed.

In the case of regular tree networks, in each instance, we ran-
domly generate a tree network of 1000 nodes with each node’s de-
gree equal to 4 [11, 12], and randomly choose an infection source.
We then simulate the infection spreading until either 10 time slots
or no less than 20% of the nodes are infected or recovered. We
observe the states of all nodes at the last simulation time slot. To
simulate the availability of different side information, we also col-
lect the states of a random selection of a given percentage (0%, 10%
or 20%) of the nodes at time Tf − τ . The inference results, av-
eraged over 1000 random instances, are shown in Fig. 2. As the
infection rate increases while the reinfection rate is fixed at 0.5, we
observe that HISS outperforms DMP and JC for most infection rates
w.r.t. both performance metrics. We also observe that incorporating
additional observations (side information) always improves the per-
formance of HISS. However, this is not always true for DMP since
the side information may mislead the inference process due to the
spreading model mismatch. As the reinfection rate increases while
the infection rate is fixed at 0.5, we observe that the advantage of
HISS over DMP and JC becomes more obvious due to its use of a
more general infection model in the inference. Again, incorporating
additional observations improves the performance of HISS but may
deteriorate that of DMP. The results also show that an estimator that
is stronger in one performance metric may be weaker in the other
performance metric, which is clear by comparing the performances
of DMP and JC.

In the case of the Facebook network, we arbitrarily select a sub-
set of 500 nodes from the Facebook dataset used in [20]. In each
simulation instance, we randomly specify an infection source and
perform simulations under the same parameter settings as the regu-
lar trees. The results are shown in Fig. 3. We observe that, in the
absence of side information, HISS outperforms DMP w.r.t. both per-
formance metrics for most infection and reinfection rates. However,
incorporating additional observations does not necessarily improve
and may even deteriorate the performance of both HISS and DMP, in
which case HISS may become inferior to DMP. This occurs because
the Facebook network subset is found to be very loopy and contain
many circular subsets, which tends to invalidate the mean-field as-
sumption embedded in the HISS and DMP estimators. Despite this
intrinsic limitation, both DMP and HISS outperform JC for almost
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Fig. 3. Comparison of estimators’ performance for a subset of the
Facebook network. The percentage refers to the fraction of nodes,
selected at random at time Tf − τ , whose states are observed.

all infection and reinfection rates, except when infection rates are
high in which case JC has the smallest average error distance. Its
corresponding average normalized rank of the true source however
remains the largest among the three estimators.

5. CONCLUSION

We have introduced a state-space description of an SIRI infection
model, and using the state propagation equations, we have derived
an approximate MAP estimator for the infection source, given the
observations of a set of node states at a snapshot time. Our proposed
estimator is able to incorporate side information like observations
of node states at intermediate times during the infection spreading
and prior beliefs of potential candidate infection sources, into the
inference procedure. Simulations on random regular tree networks
and a subset of the Facebook network suggest that the HISS esti-
mator outperforms the Jordan center and DMP estimator for a wide
range of the infection and reinfection rates. However, we note that
in networks that are very loopy, adding side information may lead
to a performance deterioration. Future work includes designing bet-
ter inference procedures that can handle side information better for
loopy networks.
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