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ABSTRACT

In this paper, we propose a novel robust hashing algorithm based on

signal-to-noise ratio (SNR) maximization to learn binary codes. We

first motivate SNR maximization for robust hashing in a statistical

model, under which maximizing SNR minimizes the robust hashing

error probability. A globally optimal solution can be obtained by

solving a generalized eigenvalue problem. The proposed algorithm

is tested on both synthetic and real datasets, showing significant per-

formance gain over existing hashing algorithms.

Index Terms— Robust hashing, SNR maximization, content

identification, generalized eigenproblem

1. INTRODUCTION

Robust hashing, a.k.a. semantic hashing and fingerprinting, has re-

ceived considerable attention from both academia and industry. For

instance, robust hashing is used in the YouTube content ID system to

detect registered audio and video uploads in real time. Shazam and

SoundHound use robust hashing for music identification on mobile

devices. Other applications include advertisement tracking, broad-

cast monitoring, copyright control, and law enforcement [1, 2, 3, 4].

In these applications, the content is encoded into compact binary

hash codes (a fingerprint) which allows real-time search. The fin-

gerprint must be robust to various content-preserving distortions,

while being discriminative enough to distinguish perceptually dif-

ferent signals.

A popular family of hash functions, which assumes centered

(mean-subtracted) inputs x ∈ R
d, linear projections W ∈ R

d×k,

and binary quantization, is given by

h(x,W ) = sgn(W T
x), (1)

where sgn(v) = 1 if v ≥ 0 and −1 otherwise. For a matrix or vec-

tor, sgn(·) denotes the element-wise operation. Many robust hash-

ing algorithms, such as in [5, 6, 7, 8, 9], fall in this category. Other

families of hash functions such as kernelized hash functions [10],

multilayer neural networks [11, 12], and boosting [13, 14] are more

expensive to train and evaluate.

Traditionally, W was generated by randomly sampling a distri-

bution that satisfies the locality-sensitive property [15, 16]. How-

ever, data-independent W can lead to inefficient codes, and thus re-

quire much longer codes (larger k) to work well. Recently, learning

W from training datasets has been shown to yield better performance

than data-independent W for the same code length [6, 8, 12, 9]. To

learn W , the nondifferentiable and nonconvex sgn function of (1)

is often approximated by either the identity function h(x;W ) =
W Tx [6, 7, 8], which introduces large approximation error when
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the magnitude of W T x is large, or the hyperbolic tangent function

h(x;W ) = tanh(W T x) [9], where the optimization may be trapped

in a bad local optimum due to the nonconvexity of the tanh function.

In this paper, we analyze a statistical model for robust hashing

and show that maximizing the signal-to-noise ratio (SNR) minimizes

the robust hashing error probability. SNR has been used as the per-

formance measure in many applications, such as lossy compression

[17], matched filtering [18], relay functionality in memoryless re-

lay networks [19], and beamforming in narrowband sensor arrays

[20, 21]. However, to our knowledge, using SNR as the performance

measure for robust hashing has never been considered in the litera-

ture.

Motivated by the analysis, we propose a SNR maximization

hashing (SNR-MH) algorithm that iteratively finds uncorrelated pro-

jection directions that maximize the SNR. In doing so, we bypass the

step of approximating the sgn function and finds the global optimal

solution. Experimental results from both synthetic and real datasets

demonstrate SNR-MH’s superior performance in learning compact

binary codes.

2. A MOTIVATIONAL MODEL

In this section, we consider a statistical model for robust hashing and

motivate our signal-to-noise ratio maximization hashing (SNR-MH)

by showing that a larger SNR leads to a smaller robust hashing error

probability.

2.1. A Statistical Model for Robust Hashing

The statistical model consists of the following ingredients:

(A1) Assume X follows the distribution PX with mean 0 and covari-

ance matrix CX ∈ R
d×d.

(A2) When the query item Y is a distorted version of X, we assume

the following noise model holds:

Y = X + Z, (2)

where Z is independent of X and follows the distribution PZ

with mean 0 and positive-definite covariance matrix CZ .

(A3) When X and Y are not related, Y is independent of X and

follows the distribution PY.

(A4) Assume a projection matrix W ∈ R
d×k, k ≤ d such that

W TCXW and W TCZW are both diagonal 1, i.e., the trans-

formed feature components wT
i X’s are uncorrelated and

the transformed noise components wT
i Z’s are uncorrelated.

Denote by {σ2
i }

d
i=1 and {λ2

i }
d
i=1 the diagonal entries of

1The existence of such W is guaranteed [22, Chapter 15].
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W TCXW and W TCZW respectively. For the i-th projec-

tion, we have wT
i Y = wT

i X + wT
i Z, which give rise to the

i-th signal-to-noise ratio as

SNRi ,
σ2
i

λ2
i

, 1 ≤ i ≤ k. (3)

(A5) To generate binary fingerprints, we use the component-wise

sgn function:

F = sgn(W T
X) ∈ {±1}k

G = sgn(W T
Y) ∈ {±1}k, (4)

with Fi = sgn(wT
i X) and Gi = sgn(wT

i Y), 1 ≤ i ≤ k.

(A6) Upon seeing a (x, y) pair, a binary decision about whether x

and y are similar or dissimilar must be made based on the

fingerprints f and g, where similar and dissimilar (x, y) pairs

are defined as

Similar (S) : x and y are related by (2);

Dissimilar (D) : x and y are independent.

(A7) We use the decision rule

dH(f, g)
S

⋚
D

τ, (5)

where dH(f, g) ,
∑k

i=1 1{fi 6=gi} is the Hamming distance

between f and g and τ ∈ {0, 1, . . . , k} is a decision threshold.

The decoder declares (x, y) similar when dH(f,G) ≤ τ and

dissimilar when dH(f,G) > τ .

2.2. Error Probability Analysis

Based on the above statistical model, we analyze the robust hashing

error probabilities when X ∼ N (0, CX) and Z ∼ N (0, CZ). For

Gaussian random vectors, uncorrelatedness of wT
i X’s and wT

i Z’s

implies independence. It then follows from (A4) that Fi’s are inde-

pendent and from (A2) that so are Gi’s.

Denote by PFG(f, g) =
∏k

i=1 PFiGi
(fi, gi) the joint distribu-

tion of (F,G) when X and Y are similar. Denote by PFPG(f, g) =∏k

i=1 PFi
PGi

(fi, gi) the product probability mass function (pmf)

when X and Y are dissimilar. The performance of the hashing sys-

tem is quantified using probability of miss:

PM , PFG{dH(F,G) > τ}, (6)

and probability of false alarm

PF , PFPG{dH(F,G) ≤ τ}. (7)

In the rest of this section, we prove the following proposition

with the help of two lemmas:

Proposition 1. For a fixed τ , PM is a decreasing function of

{SNRi}
k
i=1 and PF is independent of {SNRi}

k
i=1.

Proof. When F = sgn(W T X) and G = sgn(W T Y) are generated

from dissimilar X and Y, we have

PFi
PGi

{Fi 6= Gi} =
1

2
, ∀1 ≤ i ≤ k. (8)

As the pairs (Fi, Gi), 1 ≤ i ≤ k are independent, dH(F,G) follows

the binomial distribution with k trials and parameter 1
2

:

dH(F,G) ∼ Bi(k,
1

2
). (9)

Hence, PF does not depend on {SNRi}
k
i=1.

When F and G are generated from similar X and Y, define

pi , PFiGi
{Fi 6= Gi}, 1 ≤ i ≤ k. (10)

As the pairs (Fi, Gi), 1 ≤ i ≤ k are independent, the Hamming

distance between F and G follows the Poisson binomial distribution

(PBD) with parameter {p1, . . . , pk} ∈ [0, 1]k:

PFG{dH(F,G) = l} =
∑

A∈El

∏

i∈A

pi
∏

j∈Ac

(1− pj), 0 ≤ l ≤ k,

(11)

where El is the set of all subsets of l integers that can be selected

from {1, 2, . . . , k} andAc = {1, 2, . . . , k}\A is the complement of

A.

Let TS
k = dH(F,G) when F and G are similar, so TS

k ∼
PBD({p1, . . . , pk}). Then we have PM = Pr{TS

k > τ}.

Lemma 1. For a given decision threshold τ ∈ {0, 1, . . . , k−1} and

fixed {p1, p2, . . . , pk−1}, Pr{TS
k > τ} is an increasing function of

pk.

Proof. Let TS
k−1 ∼ PBD({p1, . . . , pk−1}), for l = 0, 1, . . . , k,

we have

Pr{TS
k = l} = pk×Pr{T

S
k−1 = l−1}+(1−pk)×Pr{T

S
k−1 = l}.

(12)

Since every PBD is unimodal, first increasing, then decreasing, and

the mode is either unique or shared by two adjacent integers [23], let

l∗ be the unique mode (or the smaller of the two modes) of TS
k−1.

When l ≤ l∗, we have Pr{TS
k−1 = l − 1} < Pr{TS

k−1 = l}, so

Pr{TS
k = l} decreases with pk. When l > l∗ (or l > l∗ + 1 when

there are two modes), we have Pr{TS
k−1 = l − 1} > Pr{TS

k−1 =

l}, so Pr{TS
k = l} increases with pk.

Therefore, when 0 ≤ τ ≤ l∗, Pr{TS
k > τ} = 1 −∑τ

l=0 Pr{T
S
k = l} is an increasing function of pk. When

l∗ + 1 ≤ τ ≤ k − 1, Pr{TS
k > τ} =

∑k

l=τ+1 Pr{T
S
k = l}

is also an increasing function of pk.

Lemma 2. Under (A2) and (A4), pi is a decreasing function of

SNRi for i = 1, . . . , k.

Proof. Denote by X̃i = wT
i X and Z̃i = wT

i Z the i-th transformed

feature random variable and transformed noise random variable re-

spectively. Then X̃i ∼ N (0, σ2
i ) and Z̃i ∼ N (0, λ2

i ). By (2) and

(4), Fi = sgn(X̃i) and Gi = sgn(X̃i + Z̃i) are independent. It has

been shown in [24, Equations 16 and 17] that

pi = PFiGi
{Fi 6= Gi} =

1

π
arctan

(
1

SNRi

)
, (13)

which is a decreasing function of SNRi.

Combining results from Lemma 1 and Lemma 2, we have shown

that for a fixed τ , PM is a decreasing function of {SNRi}
k
i=1.
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3. SNR MAXIMIZATION HASHING

Motivated by the analysis in Section 2, we propose a hashing al-

gorithm based on SNR maximization, which bypasses the step of

approximating the sgn function and finds the globally optimal solu-

tion.

Denote by X ∈ R
d and Z ∈ R

d the feature random vector

and noise vector respectively (both X and Z have mean zero). The

goal is to learn a d × k transformation matrix W = [w1, . . . , wk]
such that the transformed feature vector W TX ∈ R

k is uncorrelated

and the SNR at each projection SNRi = var(wT
i X)/var(wT

i Z) is

maximized. Mathematically, for i = 1, 2, . . . , k, wi is sequentially

learnt via the following optimization:

wi =argmax
w

wTCXw

wTCZw

subject to wTCXwj = 0, ∀j < i

wTCZwj = 0, ∀j < i

wTCZw = 1,

(14)

where the last constraint is to normalize the transformed noise to unit

power so the solution is unique. To ensure CZ is invertible, a small

constant may be added to the diagonal entries of CZ , i.e., replacing

CZ with CZ + αI where I denotes the identity matrix.

The optimization (14) is used in multiclass Fisher discriminant

analysis (FDA) [25] to learn up to k linear projections when there

are k + 1 different classes. In multiclass FDA, CX is the inter-class

scatter matrix and CZ is the intra-class scatter matrix. The solution

of (14) is given by the k eigenvectors corresponding to the first k
largest eigenvalues of the generalized eigenproblem [25]

CXw = γCZw, (15)

where γ is the eigenvalue (also the SNR) associated with eigenvector

w.

There are several ways to reduce (15) to a standard eigendecom-

position problem [22]. One way is to form C−1
Z CX , but in general

C−1
Z CX is not symmetric so all the nice properties about diagonal-

izing symmetric matrices will be lost.

Another way to solve (15) is by using the Cholesky decomposi-

tion on CZ . Let CZ = LLT where L is a lower triangular matrix.

Then (15) becomes

[
L−1CXL

−T
] [
LTw

]
= γ

[
LTw

]
, (16)

which is a standard eigendecomposition problem. Note that this pro-

cedure is equivalent to applying a whitening transformation L−1 on

the noise. After whitening, L−1Z and L−1X have covariance matri-

ces L−1CZL
−T = I and L−1CXL

−T respectively.

Connection to PCA Hashing: In PCA hashing [6, 8], W is

given by the top k eigenvectors of CX . This is equivalent to as-

suming CZ is the identity matrix in (15). PCA hashing maximizes

the transformed feature variance without considering the noise. The

only case PCA hashing is optimal in the sense of SNR maximiza-

tion is when the noise Z has uncorrelated components with equal

variance.

Connection to Semi-Supervised Hashing (SSH): SSH [6] was

formulated as minimizing empirical error on the labeled data while

maximizing variance and independence of hash bits over the labeled

and unlabeled data. After approximating the sgn function with the

identity function, SSH maximizes the following objective function

subject to the constraint W TW = I :

k∑

i=1

[
wT

i CXY wi − wT
i CXŶ

wi + βwT
i CXwi

]
, (17)

where CXY and C
XŶ

denote the cross covariance matrices between

similar and dissimilar X and Y respectively and β > 0 is a weighting

parameter chosen by cross-validation. The optimal projection matrix

W then consists of the top eigenvectors of the matrixCXY −CXŶ +
βCX .

Under the statistical model of Section 2, CXY becomes CX and

C
XŶ

is the zero matrix. As a result, the optimal projections of SSH

are equivalent to those of PCA Hashing.

In the next section, we will compare empirical performance of

SNR-MH and other hashing algorithms.

4. EXPERIMENTAL RESULTS

4.1. Results on Synthetic Data

We first run simulations on synthetic datasets where we compare per-

formance between SNR-MH and PCAH under the statistical model

in Section 2. We fix the feature dimension d = 128. The feature

vector X consists of i.i.d. samples from N (0, CX). The covariance

matrix CX = UDXU
T , where U is a random d × d orthogonal

matrix and DX is a d × d diagonal matrix with diagonal entries

uniformly sampled from (0.5, 1) and normalized so that their sum

equals to P = 128 where P is the total signal power.

The noise vector Z consists of i.i.d. samples from N (0, CZ)
where CZ = V DZV

T with V being a random orthogonal matrix

and DZ = diag{dz1, dz2, . . . , dzd}. Fixing the total noise power

equal to P above, we consider three different scenarios depending

on how {dz1, dz2, . . . , dzd} are generated:

1. Uniform: dzi = P/d, ∀1 ≤ i ≤ d.

2. Linear: dzi = a + (i− 1)r, ∀1 ≤ i ≤ d, where a = 0.1

and
∑d

i=1 dzi = P .

3. Exponential: dzi = ar(i−1), ∀1 ≤ i ≤ d, where r =
1.05 and

∑d

i=1 dzi = P .

We generate 500,000 similar and dissimilar pairs for training and

another 500,000 similar and dissimilar pairs for testing. Simulation

results are shown in Fig. 1. The left column shows SNRi for each

projection wi learnt by SNR maximization and PCA; the right col-

umn shows ROC curves for SNR-MH and PCAH at different code

lengths. The rows corresponds to uniformly, linearly and exponen-

tially generated {dz1, dz2, . . . , dzd} respectively.

Consider the left column first. As noted in Section 3, SNR-MH

and PCA coincide in the uniform scenario. As we move to the lin-

ear (second row) and exponential (third row) scenarios where noise

power is not evenly distributed, SNRi increases from 1.32 to 9.98

and 81.83 in SNR maximization while remains largely unchanged in

PCA. Moreover, more high SNR projections are learnt in the expo-

nential case than in the linear case as exponential distribution creates

more smaller dzi’s. On the contrary, PCA performs similarly across

the three scenarios and SNRi is generally not a monotone function

of the PCA projections as PCA seeks the variance-maximizing pro-

jections of the signal and ignores the noise structure.

Showing in the right column, SNR-MH and PCAH performs in-

distinguishably in the uniform scenario, whereas SNR-MH outper-

forms PCAH significantly in the linear and exponential scenarios,

especially in the exponential scenario where the gain is in orders of

magnitude due to the high SNR projections learnt by SNR maxi-

mization.
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Fig. 1: Performance on the synthetic dataset. The left column shows

SNRi for each projection wi learnt by SNR maximization or PCA;

the right column shows ROC curves for SNR-MH and PCAH at dif-

ferent code lengths. Rows correspond to uniformly, linearly and ex-

ponentially generated {dz1, dz2, . . . , dzd} respectively.

4.2. Results on Audio Content Identification

Next, we test our proposed SNR-MH on an audio content identifica-

tion (ID) system. The problem is to determine whether a given query

y is related to some element of the database withM elements, and if

so, identify which one. To this end, an algorithm must be designed,

returning the decision ψ(y) ∈ {0, 1, 2, . . . ,M}, where ψ(y) = 0
indicates that y is unrelated to any of the database elements. This is

a single-output decoder. Alternatively, a variable-size list decoder

L(y) ⊆ {1, 2, . . . ,M} might be used, returning 0, 1, 2 or more

matches.

The audio dataset is a collection of 1,700 songs spanning a va-

riety of music genres including classical, vocal, rock and pop. We

randomly divide the 1,700 songs into training, validation, and testing

subsets consisting of 100, 100, and 1,500 songs respectively. From

the training songs, we generate 22,400 similar and 22,400 dissimilar

feature pairs. The audio distortions considered are: 400 Hz to 4 kHz

bandpass filtering, tunnel reverberation, boost bass, recording in-

dustry association of America (RIAA) equalization, down-sampling

to 16 kHz, Attack-Decay-Sustain-Release (ADSR) envelop, and 64

kb/s WMA encoding. On top of the above distortions, each audio

signal is encoded by 96 kb/s MP3 encoding and added a time delay

of 92.9 ms.

We follow the same experimental setup as in [26] for audio fin-
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Fig. 2: Performance on audio content Identification. The query con-

sists of 16 audio segments and 32 bits are extracted from each audio

segment by each hashing algorithm.

gerprinting. An audio signal is first normalized to mono with 11,025

Hz sampling rate, and then converted into overlapping segments by

a window with size 371.52 ms and shift 185.76 ms. For every seg-

ment, an M -dimensional spectral subband centroid (SSC) vector is

computed [27] fromM = 16 critical subband linearly spaced in mel

scale from 300 Hz to 5300 Hz. A SSC image, built from N = 10
consecutive SSC vectors, is the basic building block for fingerprint

extraction. Given a 16 × 10 SSC image, we first convert it into a

160 dimensional vector and extract 32 bits from it by SNR-MH as

the subfingerprint. For every shift of 185.76 ms, an SSC image is

obtained from an audio segment of length 2.04 s. Every audio query

is fixed to be 5 s long, corresponding to 16 SSC images.

To compare performance, we estimate probability of false pos-

itive (PFP ) and probability of false negative (PFN ) for the single-

output decoder, and expected number of incorrect items on the list

(E(Ni)) and probability of miss (Pmiss) for the list decoder [26].

Besides PCAH and SSH, we also compare with two boosting-based

hashing algorithms, symmetric pairwise boosting (SPB) [13] and

a regularized Adaboost (ACCR Adaboost) [14, 26], which have

achieved excellent content ID performance on audio.

Fig. 2 shows the performance comparison on the audio content

identification experiments. For both decoders, SNR-MH outper-

forms all other methods. For the list decoder, SNR-MH outperforms

the next best by almost an order of magnitude .
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