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ABSTRACT

As mobile devices are becoming more ubiquitous, it becomes impor-
tant to continuously verify the identity of the user during all interac-
tions rather than just at login time. This paper investigates the effec-
tiveness of methods for fully-automatic face recognition in solving
the Active Authentication (AA) problem for smartphones. We report
the results of face authentication using videos recorded by the front
camera. The videos were acquired while the users were performing
a number of tasks under three different ambient conditions to cap-
ture the type of variations caused by the ’mobility’ of the devices.
An inspection of these videos reveal a combination of favorable and
challenging properties unique to smartphone face videos. In addition
to variations caused by the mobility of the device, other challenges
in the dataset include occlusion, occasional pose changes, blur and
face/fiducial points localization errors. We evaluate still image and
image set-based authentication algorithms using intensity features
extracted around fiducial points. The recognition rates drop dramat-
ically when enrollment and test videos come from different sessions
. We will make the dataset and the computed features publicly avail-
able1 to help the design of algorithms that are more robust to varia-
tions due to factors mentioned above.

Index Terms— Face recognition, mobile devices, active authen-
tication, biometrics recognition.

1. INTRODUCTION

Developments in sensing and communication technologies have led
to an explosion in the use of mobile devices such as smartphones
and tablets. Mobile devices make the management of personal in-
formation such as emails, bank accounts and profiles convenient and
flexible. However, with the increasing use of mobile devises one has
to constantly worry about the security and privacy as the loss of a
mobile device would compromise personal information of the user.

Most mobile devices use passwords, pin numbers, or secret pat-
terns for authenticating users. As long as the device remains active,
there is no mechanism to verify that the user originally authenticated
is still the user in control of the device. As a result, unauthorized
individuals may improperly gain access to personal information of
the user if the password is compromised. Active Authentication
(AA) systems deal with this issue by continuously monitoring the
user identity after the initial access has been granted. However, AA
remains an unsolved problem specially for smartphones. Various ef-
forts for authenticating smartphones have been proposed. Examples
include systems based on screen touch gestures [1, 2, 3], gait recog-
nition [4], and device movement patterns (as measured by the ac-
celerometer) [5]. As smartphones come equipped with a user-facing
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1http://www.cfar.umd.edu/˜rama/research.html

Fig. 1: Sample video frames for 20 (out of 50) users. The face of the
user is always close to the camera. The bottom row shows some of
the challenges present in the data including illumination, pose, and
expression variations, occlusion, and blur.

camera and multiple core processors/GPUs, it is becoming more fea-
sible to utilize the existing body of research in face recognition for
face-based AA on smartphones.

Over the years, many algorithms have been proposed for face
recognition from still-images, image-sets and videos. Examples in-
clude Eigenfaces [6], Fisherfaces [7, 8], SRC [9], AHISD/CHISD [10],
SANP [11], DFRV [12], and MSSRC [13] just to name a few.
While such algorithms have been tested on challenging bench-
marks [14, 15, 16, 17] it is hard to predict if they will achieve the
same performance on smartphone face videos as they may involve
challenges different from those in surveillance-based face recogni-
tion datasets. Thus, it becomes necessary to (a) build a dataset that
captures the challenges of smartphone face videos and (b) provide
a benchmark to quantify how well existing algorithms can solve
the problem in addition to helping future research efforts. MO-
BIO is the only other benchmark that is based on smartphone face
videos [18]. Unlike our study, the benchmark of MOBIO considered
only still-image-based methods and only one frame per video is
manually cropped, normalized and included in the evaluation [19].
So challenges such as partial faces and incorrect facial/fiducial point
detections are not addressed in that work.

In this paper, we present a benchmark for measuring (and com-
paring) the effectiveness of face recognition techniques when used
for active authentication using face videos captured by the smart-
phone’s front-facing camera. The benchmark dataset consists of
750 videos from 50 different users and two evaluation protocols
that reflect some of the challenges a typical face-based active au-
thentication system is likely to deal with in practical smartphone
applications. We used the two protocols to evaluate several exist-
ing techniques for still-image-based and image-set-based face recog-
nition including state-of-the-art algorithms. Although some tech-
niques perform better than others, the best performance obtained
is still not adequate even when the features are extracted around
face fiducial points. To encourage further research, we will make
the dataset, the extracted features and evaluation protocols publicly
available1.

The paper is organized follows. In Section 2, we describe the
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Fig. 2: Screen shots of the application and tasks used to collect data
on an iPhone 5s.

dataset collected by the authors’ group. The preprocessing pipeline
including face detection and feature extraction is explained in Sec-
tion 3. Section 4 presents the evaluation protocols while Section 5
gives the benchmark results. The paper is concluded in Section 6
with a brief summary and discussion.

2. MOBILE FACE DATASET DESCRIPTION

The dataset was collected using a custom-written app on an iPhone
5s. The app collected data for five different tasks (See Fig. 2). Dur-
ing each task, the app recorded each users’ face video from the front
camera as well as the touch data sensed by the screen2. Each user
performed five tasks in three settings (sessions) with very different
environmental conditions. These setting were as follows: (a) in a
well-lit room, (b) in the same room but with dim lighting, and (c)
in a different room with natural daytime illumination. Although
the three sessions of a given user were collected in the same day,
the benchmark results indicate that the dataset is still challenging as
state-of-the-art methods fail to achieve good performance in cross-
session evaluations. The different tasks are described below.

• Enrollment Task: The user would enroll his/her face by turn-
ing his/her head to the left, then to the right, then up, and fi-
nally down while being recorded by the front-facing camera
on the iPhone. Following the enrollment task, the user would
perform four tasks with both face and screen touch data be-
ing recorded simultaneously. The four tasks are described as
follows.

• Document Task: The user is presented with a 12-page long
PDF research paper and is asked to count the number of items
indicated by the task proctor such as figures, tables etc.

• Picture Task: A large poster-like image displayed 72 cars
with different colors in a 12 by 6 table. The user was asked to
count the number of cars of a particular color selected by the
task proctor. Only a few cars could be seen at any given time
on the screen and so scrolling was necessary to view all cars.

• Popup Task: 15 images were positioned off screen in such a
way that only a little bit of the image was shown. The user
was required to drag the image and position it in the center of
the iPhone to the best of their ability.

• Scrolling Task: The app displayed a collection of images that
were arranged horizontally and vertically. Each image would
take up the whole screen and the user was required to swipe
(using their finger) on the screen left and right or up and down
in order to navigate through the images.

The new dataset consists of 750 video sequences from 50 dif-
ferent users. Before starting each task, a proctor verbally describes
the task to the user. No further instructions were given to the users

2Note that we only focus on the face data in this paper. Results on the
touch data will be presented elsewhere.

Fig. 3: Increasing the size of the smallest search window of VJ de-
tector to 25% of the frame size eliminates all the false alarms within
the 149 detections (shown in the left) made in a sample video file
while keeping the 8 true positives (shown in the right).

regarding their pose or the way they should hold and interact with
the device while doing the different tasks. The resolution of each
video is 1280 × 720. The average video duration is 11 seconds for
the Enrollment Task, 43 seconds for the Document Task, 40 seconds
for the Picture Task, 51 seconds for the Popup Task, and 32 seconds
for the Scrolling Task. Figure 1 shows some sample recorded images
from this dataset.

An inspection of videos in this dataset reveals a combination of
characteristics unique to front camera videos. Some of these are fa-
vorable characteristics that can be utilized to increase the robustness
and efficiency of the authentication process. For example, most users
keep their faces close to the smartphone while using it. Most of the
time, users keep their faces and eyes directed towards the phone (i.e.
the camera) while they interact or read something off the phone al-
though they may turn their heads occasionally, for example, to speak
to someone or look around.

Other characteristics present in these videos are challenging for
many state-of-the-art face authentication systems. The fact that the
device (and so the camera) is held by the user during data acquisition
phase contributes to many observed variations in face images. For
example, the imaging device is subject to shakes and sudden move-
ments which result in blurred frames in some of the videos (even
normal head movements contribute to the blurring of faces). Users
can also adjust the height and distance of the device relative to their
heads in the middle of any interaction, which can change the back-
ground and the location, size and distortion of the face within the im-
ages. We also noticed that some users hold the device during some
interactions such that only a part of the face remains fully within the
field of view of the camera.

In addition to the aforementioned challenges, a major challenge
with smartphone face videos is the variations in illumination and
contextual conditions within the videos of the same subject resulting
from the mobility of the device. This issue is practically inevitable
as smartphones are designed to be carried and used everywhere and
all the time. To capture this mobility challenge in our dataset, the
data for each user has been collected under the three aforementioned
sessions, each of which has different illumination condition.

3. PREPROCESSING

Face Detection The first step is to locate the user’s face from each
frame. While there are several algorithms for face detection [20],
we used the Viola-Jones (VJ) detector [21] as it is relatively fast and
has tuned open-source implementations available on popular smart-
phone platforms. We utilized the fact that the user’s face is close to
the camera during acquisition time by setting the size of the smallest
search window to 25% of the frame resolution. This makes the detec-
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Fig. 4: Top row: cropped facial detections (before histogram nor-
malization). Bottow row: the fiducial points computed by the pre-
trained model of [22]. The left three pairs are examples of good
results while the right three pairs are examples of incorrectly placed
fiducial points.

tor run 46 times faster (28 fps on MATLAB using a single-core 2.2
GHz processor) while reducing the false positives drastically which
usually have smaller dimensions (see Figure 3 for an example).

It is worth noting that some frames contribute no detections. In
many cases, this is because of partial faces or the user looking away
from the phone.

Fiducial Point Detection Given the face bounding box, we use
the pre-trained landmark detector of [22] available from [23] to
identify fiducial points at the eyes, nose and mouth. We use these to
guide the feature extraction step in an effort to normalize appearance
variations due to pose and expression. For robustness, we drop any
detection if we find that any of the fiducial points on the eyes, nose
or mouth is outside or too close to the boundary of the face detection
rectangle. A fiducial point is considered too close if it lies less than
5 pixels away from any of the four sides of the detection rectangle.
Since all preprocessing is fully automatic, the resulting detections
may not always be perfect. Figure 4 shows examples of good and
bad results obtained. We do not attempt to filter out these bad results
manually and we rely on the robustness of the subsequent image-set
classifier to deal with such outliers.

The detected faces are then cropped out and rescaled to 256 ×
256. We then apply histogram equalization to reduce the variations
due to illumination. The resulting face images are then used for
feature extraction.

Feature Extraction Given a detected face image I, we extract a
400D feature vector x = F(I). We consider two types of inten-
sity features F1 and F2. The first type F1 is holistic in nature which
works by rescaling I into 20× 20 and arranging the intensity values
into x. The second type F2 utilizes the locations of fiducial points
to improve the alignment of the intensity values in x. It achieves this
by computing four bounding boxes of the mouth, left eye, right eye,
and nose fiducial points and then we extend each bounding box by
including 5 more pixels in each direction to include more context.
Subsequently, we resize the mouth box to 7 × 14, each eye box to
9× 11, and the nose box to 8× 13. This gives a total of 400 inten-
sity values which are arranged into the feature vector x (see Figure 5
for illustration). We refer to such features as MEEN features be-
cause they are constructed from the Mouth, left Eye, right Eye, and
the Nose. As expected, we obtain better accuracy using the MEEN
features.

If there are n face images {I1, I2, ..., In} in a given video
V, we obtain a set of n corresponding feature vectors F(V) =
{x1,x2, ...,xn}. Image-set-based face recognition techniques (or
simple extensions of still-image-based ones) are then used for train-
ing and/or testing.
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Fig. 5: MEEN features. The regions surrounding the landmarks on
the mouth, eyes and nose are extracted, rescaled and arranged into a
400D feature vector.

4. EVALUATION PROTOCOLS

A typical practical scenario for using an active face authentication
system on smartphones would involve an enrollment stage in which
the users enroll their face for at least one session. After enrollment,
the system is set to query mode and is expected to receive a continu-
ous sequence of image-set queries where the overall amount of query
data is much larger than the enrollment data. Since smartphones are
designed to be used everywhere, the query sets may involve places
and illumination settings different from those present during enroll-
ment.

We consider in this benchmark two evaluation protocols that
model this scenario. In both protocols, the overall amount of query
data is bigger than that of enrollment data. In addition, the illumi-
nation settings are different from those of enrollment. In protocol
1, the system is trained on the enrollment videos from one session
(e.g. session 1) and is tested on non-enrollment video clips from the
other two sessions (e.g. sessions 2 and 3). In protocol 2, the system
is trained on the data from two enrollment sessions (e.g. sessions
1 and 2) and is tested on non-enrollment video clips from the other
session (e.g. session 3).

The test video clips are created from the non-enrollment task
videos by splitting each task video into 10-second long video clips
and keeping only those clips with at least one face detection. The
rationale is that in practice, the system should authenticate the user
continuously and one way to achieve this is to run a query period-
ically. The query period we have adopted in this work is 10 sec-
onds. Given a query video clip, the system should identify the sub-
ject present in that video clip. Accordingly, we cast the problem as a
50-class identification problem.

5. EXPERIMENTAL RESULTS
We evaluated 4 still-image-based methods including Eigenfaces
(EF) [6], Fisherfaces (FF) [7, 8], Large-Margin Nearest Neigh-
bour (LMNN) [24], and Sparse Representation-based Classification
(SRC) [9]. In addition, we included 5 image-set-based methods
based on Affine Hull-based Image Set Distance (AHISD) [10],
Convex Hull-based Image Set Distance (CHISD) [10], Sparse-
Approximated Nearest Points (SANP) [11], Dictionary-based Face
Recognition from Videos (DFRV) [12], and Mean-Sequence SRC
(MSSRC) [13]. We adjusted the computation of the data mean and
scatter matrices in EF and FF by reweighting the contribution of the
samples of each class so that all classes contribute equally regardless
of the different class sizes. As in [7], we dropped the first three prin-
cipal components in EF and use the subsequent 150 components to
define the PCA projection matrix (adding more components does not
improve the recognition rate in our experiments). Still-image-based
methods process an image-set query by independently classifying
each vector in the query and declaring the most frequently occuring
label as the winner.
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Table 1: Recognition rates under protocol 1: The different models are trained using one session’s enrollment videos and tested on video clips
from another session. For each row, we show in bold the three highest recognition rates achieved for this experimental setting.

Enrollment Sessions Testing Sessions EF FF LMNN SRC AHISD CHISD SANP DFRV MSSRC

1 2 40.95 54.48 30.80 52.79 22.17 14.55 17.26 29.78 47.21
1 3 34.02 45.27 30.77 51.18 21.30 13.91 17.01 35.65 46.15
2 1 22.23 25.52 13.41 44.18 10.23 7.97 10.60 32.55 43.06
2 3 49.70 56.80 43.05 58.58 47.78 44.67 44.97 46.30 60.36
3 1 28.05 24.77 22.05 17.64 10.69 11.63 13.04 19.89 17.64
3 2 55.50 56.01 50.76 51.95 46.87 41.12 43.82 47.04 45.85

Table 2: Recognition rates under protocol 2: The different models are trained using the enrollment videos of two sessions and tested on video
clips from the remaining session. For each row, we show in bold the three highest recognition rates achieved for this experimental setting.

Enrollment Sessions Testing Sessions EF FF LMNN SRC AHISD CHISD SANP DFRV MSSRC

{1, 2} 3 55.18 74.85 48.37 72.93 51.18 47.04 48.08 52.81 72.19
{2, 3} 1 30.11 54.69 25.33 24.20 14.35 16.51 16.79 39.21 22.14
{1, 3} 2 63.96 71.91 56.18 72.93 50.08 43.15 46.70 50.25 69.71

Table 3: Recognition rates when enrollment videos and non-enrollment test video clips come from the same session. The recognition rates for
such setting are relatively good compared to those of protocol 1 and protocol 2. For each row, we show in bold the three highest recognition
rates achieved for this experimental setting.

Enrollment Sessions Testing Sessions EF FF LMNN SRC AHISD CHISD SANP DFRV MSSRC

1 1 91.84 93.53 94.65 93.25 94.00 95.50 94.84 91.56 93.25
2 2 79.70 84.77 84.94 84.94 86.46 85.45 85.11 83.59 85.45
3 3 82.25 86.98 83.58 80.47 85.06 82.54 83.14 76.78 73.52
{1, 2} 1 92.31 93.34 94.18 92.96 93.90 95.31 94.47 92.03 93.06
{1, 2} 2 81.73 83.76 83.76 85.11 85.96 85.11 84.77 83.93 85.79
{2, 3} 2 81.90 84.09 82.57 79.86 85.45 84.43 83.59 82.57 68.02
{2, 3} 3 84.17 91.72 85.21 82.40 88.46 84.76 85.50 81.66 73.22
{1, 3} 1 93.25 93.25 93.71 92.78 94.09 96.06 95.03 92.50 92.68
{1, 3} 3 83.14 87.43 83.88 85.36 84.62 82.40 83.58 78.25 83.88

Table 1 shows the recognition rates under protocol 1 and Table 2
shows the recognition rates under protocol 2. For the sake of com-
pleteness, we show in Table 3 the recognition rates obtained by test-
ing on the non-enrollment video clips from the same sessions used
for training. These are the accuracies that would be obtained when
the mobility challenge is excluded (although other challenges such
as partial faces, blur, expression, pose variations, and face/landmark
localization errors are still present). All tables show results obtained
using the fiducial point-based features. The less superior results ob-
tained with holistic features are not shown due to page limitations.

Tables 1 and 2 indicate that the best performing methods are
FF, SRC, and MSSRC. Yet, the recognition rates (in percentages)
they achieve for protocol 1 range between 24.8 and 56.8 for FF, 17.6
and 58.6 for SRC, and 17.6 and 60.4 for MSSRC. For protocol 2,
they range between 54.7 and 74.9 for FF, 24.2 and 73.9 for SRC,
and 22.1 and 72.2 for MSSRC. Compared to the recognition rates
obtained in 3, it can be seen that the evaluated methods (including
state-of-the-art image-set methods) have difficulty coping with the
mobility challenge despite their relatively good performance when
the mobility challenge is excluded while all the other challenges are
kept.

6. CONCLUDING REMARKS AND FUTURE WORK

We have investigated in this paper how well contemporary image-
set-based methods combined with fiducial-point-based features can
be used for active authentication on smartphones. A dataset of 750

videos was collected over three sessions with different illumination
conditions to capture the kind of variations that are likely to be
present with mobile devices. An examination of the videos in the
dataset revealed a unique combination of properties and challenges
that is specific to smartphone face videos. We utilized the fact that
the user’s face is always close to the phone to increase the efficiency
and reduce the false positives of the face detection phase. Although
the compared state-of-the-art techniques perform relatively well
when the enrollment and evaluation data come from the same ses-
sion, the experiments indicate that they have difficulty addressing
the variations in illumination and context that are likely to be present
due to the mobility of the device.

One of the limitations of our study is that all the three ses-
sions of any given user are collected in the same day. Therefore,
the dataset misses appearance variations due to change in hair style,
shaving, and/or introduction/removal of face-covering clothing such
as scarves or hats. This does not limit the usefulness of the dataset
since it captures a subset of the practically possible variations that
has already been shown through experiments to be challenging to
the state-of-the-art algorithms included in the comparison.

The benchmark presented in this paper motivates the develop-
ment of better features and recognition algorithms that are invariant
to the mobility challenge yet efficient to compute. Also, the detec-
tion and classification of partial faces need further research to allow
video clips with partial faces to be processed rather than getting in-
correctly flagged as not having any faces.
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