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ABSTRACT
Recent works on image co-segmentation aim to segment
common objects among image sets. These methods can
co-segment simple images well, but their performance may
degrade significantly on more cluttered images. In order to
co-segment both simple and complex images well, this paper
proposes a novel paradigm to rank images and to propagate
the segmentation results from the simple images to more
and more complex ones. In the experiments, the proposed
paradigm demonstrates its effectiveness in segmenting large
image sets with a wide variety in object appearance, sizes,
orientations, poses, and multiple objects in one image. It
outperformed the current state-of-the-art algorithms signifi-
cantly, especially in difficult images.

Index Terms— Co-segmentation, image ranking, seg-
mentation propagation, difficult images.

1. INTRODUCTION

Image segmentation is used in many image applications for
classification and recognition. Segmentation results often
serve as spatial priors for object-based analysis [1] such as in
remote sensing [2]. Without a clear definition of subsequent
applications, segmentation by itself is not well defined; i.e.,
the definitions of complete objects vary according to their
utilization [3]. For example, if an image contains a pedes-
trian wearing a hat, a good segmentation for hat recognition
would be just the hat, but pedestrian recognition may require
both the person and the hat as one segment. This problem
is alleviated when a common object exists in a large image
set. The common object becomes a priori information for
segmentation. Image co-segmentation is typically defined as
the task of jointly segmenting something similar in an image
set.

Images co-segmentation has been actively researched re-
cently [4, 5, 6, 7, 8, 9, 10]. Most of them are unsupervised
except [7], which requires interaction with users. They usu-
ally leverage on similarities in foregrounds and backgrounds
among different images, and integrate pixel classification into
the segmentation. In modeling, these methods aim to extract
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Fig. 1. Examples of co-segmentation results. First row: original
images, second row: results from [6].

what is common in all images in terms of visual features such
as the Scale Invariant Feature Transform (SIFT) [4]. The ex-
isting co-segmentation methods face a few challenges. First,
the common objects across images may vary substantially in
appearance, color, and orientations. It is hard to model ob-
ject segmentation in feature spaces, especially when image
features are high dimensional and samples are few. Cluttered
backgrounds may further complicate this problem. Second,
including both simple and cluttered images for modeling may
result in a non-discriminative model and poor segmentation in
simple images as illustrated in Fig. 1. Third, a large image set
may contain multiple object classes. Without the class labels,
it is challenging for the existing co-segmentation techniques
to work well. Lastly, the images may also contain undesired
common backgrounds such as leaves, as shown in Fig. 1.

To meet these challenges, this paper proposes a co-
segmentation paradigm to segment images sequentially, from
easy to increasingly difficult images. We first propose a novel
image ranking measure to rank image segmentation easiness
based on a saliency measure. With a saliency prior, single
image segmentation is applied to the simplest images to ex-
tract complete objects. The complete object masks are then
propagated to more complex images, on which the common
objects are less salient. This propagation gives a probabilistic
estimation of foreground objects in the images, which are
then segmented using a graph cut. This process is efficient in
computation and memory, and can segment multiple object
classes simultaneously without class labels. In experiments,
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it achieved better object segmentation than the current state-
of-the-art algorithms, especially on more complex images.

2. RECENT WORKS

2.1. Recent Works on Segmentation

There is a recent trend of performing image segmentation
in a superpixel representation, which aims to group pixels
with good spatial and intensity homogeneity. This represen-
tation allows us to process images more efficiently on the
pixel group level. Two recent popular superpixel methods are
Simple Linear Iterative Clustering (SLIC) [11] and Entropy
Rate Superpixel (ERS) [12]. Both methods can handle object
boundaries well, and are computationally efficient. SLIC em-
ploys k-means clustering in a local manner with a weighted
distance measure combining both color and spatial proximity.
On the other hand, ERS formulates the superpixel segmenta-
tion problem as an optimization problem on graph topology.
The ERS method has a parameter on the expected number of
superpixels in an image. Usually, superpixels are the interme-
diate steps for segmentation, as in [12].

Although using superpixels has many benefits, clustering
superpixels into a complete object is not an easy task. Some
well-known segmentation methods such as mean-shift [13],
graph cut [14], and normalized cut methods [15] have been
used in an attempt to segment out objects of interest. The
mean-shift method recursively shifts the means of regions as
they expand to include neighboring pixels. A cluster of pixels
converges to a local distribution forming a segment, and small
statistically close segments are merged into bigger segments.
Both graph cut and normalized cut methods build a graph to
represent pixels and their neighborhood relationships. The
graph nodes are image pixels and the graph edges model the
affinity between pixels. Graph-based methods have proven to
be flexible to include multiple desired properties of segmen-
tation, such as known pixels relationships and symmetry.

Unsupervised segmentation methods do not utilize any a
priori information on the foreground and background. These
methods mainly focus on spatial grouping, rather than on
foreground segmentation of objects. The resultant images
may not give complete foreground objects.

A recent co-segmentation work [6] utilizes the well-
known discriminative clustering method for segmentation
and reformulates it into an optimization problem. However,
it cannot handle object variations well. This is extended
in [16] to a multi-class segmentation using both spectral and
discriminative clustering for a probabilistic estimation. An-
other concurrent work [17] formulates the co-segmentation
problem using an energy minimization approach for both
intra-group information within each image and inter-group
information between images. This approach may be used in
the propagation step of our proposed method.

Fig. 2. Overall algorithm framework.

2.2. Segmentation Propagation

There is also a trend towards transferring knowledge to learn
a new class from a few training examples by leveraging exam-
ples from related classes. Most of these works are intended
for object recognition or detection, but not segmentation. The
work in [18] proposes a segmentation propagation approach.
With some given segmentation masks as training samples, it
propagates the masks to the most similar unsegmented images
before performing segmentation. These segmented images
will form sources for segmentation transfer in the subsequent
step. This novel approach maps the segmentation results to
the test images based on patch similarity. The underlying as-
sumption is that similar patches share a similar foreground
and background segmentation. This approach is supervised
as it requires initial labelled images for training.

3. UNSUPERVISED IMAGE SET SEGMENTATION

Building upon the existing unsupervised segmentation meth-
ods, this paper proposes a paradigm to co-segment objects
in both simple and difficult images. In simple images with-
out cluttered backgrounds, salient objects can quickly cap-
ture the user’s attention. The common foreground objects in
simple images can be segmented out readily and completely.
Given sufficient well segmented images, the foreground ob-
ject masks can be propagated to increasingly difficult images
in the manner similar to [18]. The overall algorithm frame-
work is illustrated in Fig. 2 and is explained in more detail as
follows.
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Fig. 3. Ranking of segmentation easiness based on saliency, images
in row 1 have higher Rsal than in row 2, and are easier to segment.
Row 3 images are difficult images in the butterfly dataset.

3.1. Ranking of Segmentation Easiness

An image is easy to segment if the foreground stands out from
the homogeneous background. For such images, there should
be a clean separation between foreground and background
with clear boundaries, and the resultant segments should
contain complete foreground objects. This paper proposes a
saliency-based continuous measure for segmentation easiness
Rsal as follows:

Rsal =

∑
i∈fg S(i)∑
i S(i)

, (1)

where
∑

i∈fg S(i) is the sum of saliency scores over a fore-
ground region, and

∑
i S(i) is the sum over the whole image.

The saliency score of every image region S(i) is estimated via
a global contrast saliency score as in [19]. This score is based
on the region’s color contrast with respect to the whole im-
age, with weighted sum contributions from the neighboring
regions. Subsequently, more salient regions are segmented
out using a graph cut. Upon segmentation, the saliency rank-
ing Rsal is computed. An image with a high Rsal score should
be easy to segment. Examples of ranking by (1) are presented
in Fig. 3.

3.2. Segmentation Propagation

Simple images can be readily segmented to produce good
segmentation masks due to a clear separation between fore-
ground and background in these images. The well segmented
object masks are then propagated to more difficult images as
a segmentation prior. Even in some images that may not be
well segmented, the results can be further improved by pass-
ing them to the propagation step. The propagation step is
elaborated as follows.

Let the image set be {I1, I2, ..., It, It+1, ...}, where Ik is
an image according to our rankingRsal. Images in {I1, ..., It}
have been segmented, and image It+1 is the next to be seg-
mented. The object in image It+1 may not be as salient and
the background is more cluttered. This is where the well

segmented images can help by propagating the segmentation
masks to the similar unsegmented object regions. Since multi-
ple objects could exist in an image, we extract possible object
patches from image It+1 for comparison. The image patches
are extracted based on objectness as defined in [20], and they
may overlap. Upon extraction, each patch is then matched to
the closest K patches in the segmented set {I1, ..., It}. The
resultant segmentation prior of patch x in image It+1 is de-
fined as follows:

P (x) =
1

K

K∑
l=1

exp
(
−d2(x, l)/2σ2

)
, (2)

where P (x) is the prior probability of patch x being in the
foreground, d(x, l) is the distance between patches x and l,
and σ is a parameter to set. The patch distance d(x, l) is com-
puted based on their corresponding GIST features [21]. In this
manner, every pixel on the test patch will have a probability
of being in the foreground and being in the background.

3.3. Segmentation with Prior Information

After propagating segmentation masks, we then segment im-
age It+1 via a graph cut [22], which solves the following en-
ergy minimization problem:

E(L) =
∑
i

U(Li) +
∑
i,j

V (Li, Lj), (3)

where E(L) is the energy to minimize, U(Li) is the unary
potential of pixel i being labelled as Li, and V (Li, Lj) is
the potentials term modeling the spatial coherence between
two neighboring pixels i and j. The unary potentials term
is defined as U(Li) = −

∑
k log(P (Li|Ck)P (Ck)), where

P (Li|Ci) is the probability of pixel i belonging to class
k, k ∈ {0, 1}, and P (Ck) is the prior probability of class
k computed from (2). P (Li|Ci) is computed based on a
Gaussian mixture model. The pair-wise potentials are defined
as:

V (Li, Lj) ∝ d(i, j)−1 exp

−γ ∑
k=R,G,B

|Ii(k)− Ij(k)|1

 ,

where d(i, j) is the pixel spatial distance and |Ii(k)− Ij(k)|1
is the intensity difference across RGB channels, and γ is a
constant. The minimization and pixels labelling are carried
out iteratively until there is no change in pixel labels.

4. EXPERIMENTS

4.1. Data Sets

In the experiments, two data sets are chosen: the Leeds butter-
fly data set [23] and the flower database from Oxford Univer-
sity [24]. The butterfly data set has 10 categories as shown in
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Fig. 4. Examples of co-segmentation results, in the row sequences
of DCM [6], SC [19] and our results.

Table 1 and there are 832 images. The flower database con-
sists of 102 classes of common flowers in the United King-
dom, and there are 5198 images chosen. Both data sets have
a wide variety of object appearances and poses, and cluttered
backgrounds. They have multiple categories of foreground
objects. There are both simple and difficult images in these
two data sets. The segmentation ground truths are also pro-
vided. In this work, we used the average accuracy as the per-
formance measure.

4.2. Results

The discriminative clustering based co-segmentation method
(DCM) [6], the Saliency Cut method (SC) [19] (a graph cut
based method), and our proposed method are compared us-
ing these two data sets. In more complex images shown in
Fig. 4, the butterflies are of different orientations, slightly dif-
ferent illuminations, and different sizes. In these cases, the
DCM method performed poorly in segmenting out the but-
terflies. Both SC and our proposed methods could segment
out the butterflies well. Since the DCM method could not
handle variations in images and multi-class objects well and
was computationally expensive to process these two data sets,
only the SC method and our method were chosen for the qual-
itative evaluation.

Table 1 shows the segmentation results on the butterfly
data set. Our method significantly outperformed SC, espe-
cially on the following categories: Heliconius charitonius
(56.4% vs 72.0%), Junonia coenia (61.4% vs 72.7%), Pa-
pilio cresphontes (76.7% vs 83.6%), and Pieris rapae (54.7%,
75.2%). These categories of butterflies do not have a clear
distinction between foreground and background objects, es-
pecially for Pieris rapae (the last image in Fig. 3). Our method
could propagate the segmentation results and better handle
these difficult images.

For the flower data set, the results are shown in Fig. 5. Our
method outperformed the SC method significantly on most of
the flower categories with the average score 78.8% as com-
pared to 72.1% by SC. Computationally, it took about 8 hours

S/N Names SC [19] Our Method

1 Danaus plexippus 85.8 87.7
2 Heliconius charitonius 56.4 72.0
3 Heliconius erato 73.7 79.7
4 Junonia coenia 61.4 72.7
5 Lycaena phlaeas 79.2 79.1
6 Nymphalis antiopa 87.5 83.5
7 Papilio cresphontes 76.7 83.6
8 Pieris rapae 54.7 75.2
9 Vanessa atalanta 84.1 83.0

10 Vanessa cardui 79.2 82.1

Mean 73.9 79.9

Table 1. Segmentation results on butterfly data set, accuracy
in percentage.

Fig. 5. Segmentation results, accuracy in percentage vs the 102
categories of flowers.

to run the all the steps in the proposed methods (in MATLAB)
for 6000 images using a 16GB and 2.13 GHz Xeon machine.

5. CONCLUSION

This paper proposes a novel unsupervised co-segmentation
method for large image sets. The proposed method first ranks
the image set according to segmentation easiness. Using top
level information such as object saliency, it can perform seg-
mentation on simpler images very accurately. This is unsu-
pervised, and no class label information is required. Equipped
with the knowledge of both foreground objects and their accu-
rate masks, the proposed method then transfers the segmen-
tation knowledge to more difficult images. This sequential,
simple-to-complex manner allows the proposed method to ro-
bustly segment complex images, in which objects are not as
salient. In the experiments, more than 6,000 images were
tested for robustness. The proposed method was compared
to some current state-of-the-art algorithms, and outperformed
them significantly, especially in complex images.
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