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ABSTRACT

The optimal solution of a Markov random field (MRF) can be
solved by constructing a Markov chain that eventually goes to
a balance state. However, in most situations, only an subop-
timal solution can be obtained, because it is hard to choose
the ideal initial state and the updating strategy. While the
updating strategy has been extensively investigated, the ini-
tialization issue has been fully neglected. Though k-means-
clustering has been used exclusively in initializing the label
field, it suffers from the lack of account of the local con-
straints, which is the most essential part of the MRF model.
A structural method based on selective autoencoding (SAE)
is proposed for the label field initialization of MRF model
in the task of sonar image segmentation. SAE is similar to
the AutoEncoder, with the largest difference on the activa-
tion function, where a piece-wise sigmoid activation function
with two different slop parameters is used to selectively en-
code image patches that resemble shadow areas or other ar-
eas. The synapse matrixes of SAE network act as information
filters, preserve specific area adaptively and selectively, gen-
erating a label field that is much closer to the balance state.
Experiments on sonar image segmentation demonstrate the
efficiency of the SAE algorithm.

Index Terms— selective autoencoding, sonar image, la-
bel field, Markov random field

1. A GOOD BEGINNING IS HALF DONE

A statistical image segmentation task is to find the la-
bel field L∗ that maximizes the posterior probability [1],
PL/X (l/x) =

PL(l)PX/L(x/l)

PX(x) , where X is an observed image
and L is the label field. Now that PX (x) is fixed for a given
image X , finding L∗ is equivalent to finding the label field
L which maximizes the following energy function (i.e. MAP
estimation): E = lnPL (l) + lnPX/L (x/l) .
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In sonar images, with the existence of strong speckle nois-
es, the classification rules that solely based on global statis-
tics, like maximizing the conditional probability PX/L (x/l),
are insufficient to “clearly” segment foreground objects from
the background. To introduce the local constraints, a Markov
assumption is introduced as a kind of prior knowledge in
MRF to model the local dependent relationships between the
labels of neighboring pixels [1]. Intuitively, the prior proba-
bility PL (l) is used to “correct” the mistakes introduced by
the conditional probability. MRF model is an ideal choice for
texture image segmentation, like sonar images and geodesic
images. The conditional distribution can be described by
Weibull law, and the Markov assumption can be described by
Gibbs distribution [2].

The MRF model aims at a balance between global opti-
mization and local constraints. Such a delicate balance cannot
be easily obtained by an explicit approach. Instead, an iter-
ative optimization process, like iterated conditional method
(ICM) [1], is necessary. Simply, ICM tries to construct a
Markov chain that will eventually converge to a balance s-
tate. However, ICM tends to get into a local energy minimum
quickly. Many other transition strategies, like Markov Chain
Monte-Carlo (MCMC) [3] or simulated annealing (SA) [4],
have been proposed to jump out of the local energy barricade.

However, the balance state of a dynamical system is not
only determined by the dynamics equation, i.e. the transi-
tion strategy, but also largely depends on the initial state [5].
Unfortunately, the label field initialization issue in the MRF
model has been fully neglected. So far, the k-means algorith-
m has been exclusively used to initialize the Markov chain.
Though k-means algorithm is easy to be understood, it has
the following drawbacks:

• k-means pursues the local optimization by greedy itera-
tion. The initial centroids delineate the local searching
boundaries. Therefore, k-means tends to find a local
extremum.

• Essentially, the shape of the histogram determines the
last segmentation result. K-means tries to choose sever-
al appropriate partition points, like the local minimum
of the vallies, to divide the histogram. K-means algo-
rithm will fail if the histogram has no obvious multiple
peaks.
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• K-means doesn’t take the local configurations into ac-
count, leading to a hard segmentation.

The conditional probability parameters are directly esti-
mated from the initial label field. An inappropriate initial la-
bel field contains a large number of misclassifications, which
means that it will take a much longer time for the Markov
chain to arrive the balance state.

In this paper, a selective autoencoding algorithm is pro-
posed to binarize the sonar image. With the binary label
field, we can then estimate the prior probability PL (l) and
the conditional probability PX/L (x/l) and run the ICM iter-
ations. SAE incorporates the local constraints in the initial-
ization stage, exploiting the local spatial-structural dependent
relationships by selective encoding. In this way, SAE gener-
ates a label field that is much closer to the balance state.

The SAE algorithm is described in Section 2 and the sonar
image segmentations are shown in Section 3. We discuss re-
lated works in section 4 and conclude in Section 5.

2. SELECTIVE AUTOENCODING

The SAE network has the same structure as the AutoEncoder[6,
7]. An AutoEncoder is a feedforward, non-recurrent, three-
layer neural network, trying to reconstruct the input (I) at
the output layer (O) with the compressed representation in
the hidden layer (H). In the training stage, each randomly
sampled 8 × 8 image patch [8] is fed into the input layer.
In the labelling stage, the output is binarized to generate a
binary label field.

2.1. Training

Let xI
i be the input, yHj and zOk be the output of the hidden

layer and the output layer respectively, then

yHj = R
(
vHj

)
, zOk = R

(
vOk

)
, (1)

where vHj =
∑
i

ωHI
ji xI

i − bHj , vOk =
∑
j

ωOH
kj yHj − bOk . R (·)

is the activation function, ω and b stand for the weight and the
bias.

The reconstruction error is E = 1
2

∑
k

ek
2 = 1

2

∑
k

(
zOk − xI

k

)2.

The learning rules for ωHO
kj and bOk are the same as the tradi-

tional BP (back-propagation) algorithm [9],

∆ωOH
kj = −η

∂E

∂ωOH
kj

= −ηδky
H
j ,∆bOk = −ηδk, (2)

where δk = ekR′. R′ is the derivative, η is the learning rate.
Similarly, we derive the learning rules for ωHI

ji and bHj ,

∆ωHI
ji = −ηR′δjx

I
i ,∆bHj = −ηR′δj , (3)

where δj =
∑
k

ωOH
kj δk.

Fig. 1. Different kind of blocks. In panel (a)-(d), the left
column is the megascopic image patch, the right column is the
binarized result when the average of the image, f̄ , is removed.
Note that, in the binarized patch, −1 is shown in black and 1
in white.

2.2. Activation function R

A piecewise sigmoid function is designed when the following
issues are considered.

Firstly, the shadow area (see Fig.1(a))should be preserved
as much as possible, because it is the most salient feature that
can be used to detect objects in the post-processing stages.
The rule is applicable for the reverberation areas. Such re-
quirements could be satisfied by any sigmoid function, be-
cause it saturates when the input is sufficiently large or small.

Secondly, the negative branch of the activation function
should saturate quickly. Sonar image is full of speckle noises
(see Fig.1(b)), we hope the weighted summation of the noisy
shadow patch input, i.e. vHj and vOk , is close to the negative
saturation areas. A larger β is helpful not only in getting rid
of the noises in the region of interest (shadow area or meta-
shadow area), but also in preserving more transition area be-
tween the shadow area and other areas.

Thirdly, β in the negative axis should be larger than the
positive axis, because the image patch that contains more
shadow area should be more precisely coded. For example,
when an image patch is taken from the transition zone be-
tween the shadow area and the object area, the total energy
of an image patch is very often to be a small positive value
(see Fig.1(c)). Inversely, the total energy of a patch from
the transition zone between the shadow and the reverberation
area is more likely to be a small negative value (see Fig.1(d)).

Then, the activation function (see Fig.2) is

R (x) =

{
g (x) , if x > 0
g (βx) , if x ≤ 0

(4)
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Fig. 2. The piecewise sigmoid function R (x). β = 1 in
the positive axis and β > 1 in the minus axis. Tβ marks the
saturation point.

where (β > 1) is a selective factor, and

g (x) =
2

1 + e−x
− 1. (5)

The derivative is

R′ (x) =

{
1
2

(
1− g2 (x)

)
, if x > 0

1
2β

(
1− g2 (βx)

)
, if x ≤ 0

(6)

3. EXPERIMENTS

In this section, we compare the performance of the SAE
method with the dominant k-means-clustering algorithm in
the label field initialization. To further evaluate its benefits in
MRF-based image segmentation, we run the ICM method on
three different kinds of sonar images. Panels (a) of Fig.3-5
present three pictures taken by the forward-looking sonar,
the side-scan sonar and the multi-beam high-resolution sonar
respectively.

There are NI = 64,NH = 8,NO = 64 neurons in layer
I ,H and O respectively. We experimentally set β = 2. 40
blocks are sampled and trained for 40 iterations.

3.1. Label field initialization

The label fields provided by the k-means algorithm and the
SAE method are shown in panels (b) and (c) of Fig.3-5. Two
observations can be drawn from the comparisons:

Firstly, the SAE method highlights the shadow area,
which is the region of interest. For example, in Fig.3, the
label field provided by the k-means algorithm, i.e. Fig.3(b),
contains many “solid” noise blobs. But these blobs become
much sparse when the SAE method is applied. The results

Fig. 3. Label field initialization and the MRF segmentation
for an image taken by a forward-looking sonar.(a) is the o-
riginal image, (b) and (c) is the initial label field obtained by
k-means algorithm and the proposed SAE method respective-
ly. The corresponding image segmentation results are shown
in (d) and (f) for 5 loops, (e) and (g) for 50 loops.“LOOPS”
is the iterations in the ICM method.

show that the SAE method reduces the effects of speckle
noises and preserves better structural information.

Secondly, the performance difference enlarges when the
noise increases. For example, compared with the difference
between 5(b) and (c), Fig.3(b) and (c) differs much, because
the resolution of multi-beam sonar is far higher than the
forward-looking sonar. It demonstrates that the SAE method
is more reliable when strong noise exists.

3.2. Image Segmentation

The first task of the MRF model is to segment the sonar image
into two areas, the shadow area and the seafloor reverberation
area. Similar to [2], the conditional parameters of Weibull law
are estimated by the Maximum-Likelihood method, and the
prior parameters are estimated by the Least-Square method.
The Iterated Conditional method is adopted to construct the
Markov chain, i.e. update the label field state. In the post-
processing stage, morphological operators, like image erosion
and dilation are adopted sequentially to get rid of the pepper-
and-salt noises. In the results, candidate areas larger than 100
pixels are displayed with different colors. Note that it can
be extended to the Potts-MRF [10] by further dividing the
positive branch .

As it can be seen from panels (d)-(g) of Fig.3-5, the SAE-
initialized label field largely accelerates the segmentation
process. For example, with the forward-looking sonar and
the side-scan sonar, even after only LOOPS = 5 iterations,
the SAE-initialized MRF returns acceptable segmentations
(Fig.3(f) and 4(f)), while the k-means-initialized MRF re-
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Fig. 4. Label field initialization and the MRF segmentation
for an image taken by a side-scan sonar.

Table 1. The switching ratio of labels
Fig. 3 Fig. 4 Fig. 5

k-means 51.39% 67.21% 45.77%
SAE 27.51% 42.11% 33.49%
↓ 46.47% 37.35% 26.83%

turns relatively worse results (subfig (d) of Fig.3 and 4). It
demonstrates that the SAE method is able to provide a more
appropriate initial state. After LOOPS = 50 iterations, the
segmentation results returned by the SAE-initialized MRF
contain less background noise blobs. Even with the same
blob, the SAE-initialized MRF has smaller size. Therefore,
the SAE-initialized Markov chain is able to arrive more opti-
mized balance state.

The distance between the initial label field, L, and the fi-
nal segmentation result, Ls, can be calculated by the percent-
age of switchings,

d =
L⊙ Ls

N
(7)

where ⊙ is the xnor operator.
The switching ratio of Figs 3-5 with k−means algorithm

and the proposed SAE method are shown in Table.1. The
mean relative reduction ratio is 36.88%, which demonstrates
that SAE is able to generate a initial state that much closer to
the balance state.

Fig. 5. Label field initialization and the MRF segmentation
for an image taken by a multi-beam high-resolution sonar.

4. DISCUSSION

To our knowledge, this is the first work that devotes to the
problem of label field initialization in the MRF model. Com-
pared with the dominant k−means algorithm [1, 2], the SAE
algorithm takes structural information, i.e. local constraints,
into consideration, generates an initial label field that is far
closer to the balance state.

Though the SAE network is the same as an autoencoder[6],
or a RBM [7], they differ much on the activation function and
the binarization strategy. Firstly, a RBM learns statistical
features from a large number of data samples. However,
due to the limit of the sampling frequency of sonar equip-
ments, SAE has to learn the structural information with very
few sonar pictures. Secondly, in a RBM, the raw samples
has to be pre-processed with normalization and a zero-phase
crossing analysis (ZCA) filtering. Only the simple zero-mean
processing is needed in the SAE method. Thirdly, the binary
representation of a RBM is generated by alternating Gibbs
sampling. However, in SAE, the binary output are obtained
by a sgn function. Lastly, different activation strength is
applied to different kinds of image patches selectively.

5. CONCLUSION

A label field initialization method for the MRF model based
on selective autoencoding is proposed in the task of sonar im-
age segmentation. SAE applies different activation function-
s to different kinds of areas. With an adaptive autoencoding
mechanism, SAE takes local configuration constraints into the
initial state, generating a label field that is closer to the bal-
ance state. Experiments on different kinds of sonar images
demonstrate that SAE not only accelerates the segment pro-
cess, but also converges to a more optimized balance state.
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