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ABSTRACT

This paper introduces a graph Laplacian regularization in the hyper-
spectral unmixing formulation. The proposed regularization relies
upon the construction of a graph representation of the hyperspec-
tral image. Each node in the graph represents a pixel’s spectrum,
and edges connect similar pixels. The proposed graph framework
promotes smoothness in the estimated abundance maps and collab-
orative estimation between homogeneous areas of the image. The
resulting convex optimization problem is solved using the Alternat-
ing Direction Method of Multipliers (ADMM). A special attention is
given to the computational complexity of the algorithm, and Graph-
cut methods are proposed in order to reduce the computational bur-
den. Finally, simulations conducted on synthetic and real data il-
lustrate the effectiveness of the graph Laplacian regularization with
respect to other classical regularizations for hyperspectral unmixing.

Index Terms— Hyperspectral imaging, unmixing, graph Lapla-
cian regularization, ADMM, sparse regularization.

1. INTRODUCTION

Hyperspectral sensors provide both a spatial and a spectral repre-
sentation of a scene. They acquire images throughout the visible
and Infrared portions of the spectrum, with a spectral resolution as
narrow as 1 nm. Depending on the working distance of the hy-
perspectral camera, the spatial resolution can be of a few microm-
eters (laboratory measurements) up to a few meters (airborne re-
mote sensing). As a result every pixel in the hyperspectral image
is a vector of reflectance values also known as the pixel’s spectrum.
Unmixing [1] is one of the most prominent tools to analyze hyper-
spectral data. It consists of identifying the pure components in the
captured scene, the so-called endmembers, and then estimating their
spatial distributions, also known as their abundance maps. While
there are also works in the literature that consider nonlinear mixing
models [2, 3], most unmixing methods focus on the Linear Mixing
model [4], where each pixel is modeled by a convex combination of
the endmembers weighted by their abundances.

The purpose of this paper is to introduce the graph Laplacian
regularization in the hyperspectral unmixing formulation. This is
motivated by the intuition that pixels with similar spectral structure
and similar spatial contextual information will have broadly simi-
lar abundances. Representing these pairwise similarities by edges
gives rise to a graph, where each node represents a pixel. The result-
ing graph structure provides additional relational information which
can improve the abundance estimation accuracy and complement ex-
isting pixel-by-pixel unmixing techniques. As we shall see further
ahead in Section 3, the graph Laplacian regularization provides an el-
egant and flexible way to incorporate this information in the unmix-
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ing problem. This regularization has been widely used in many fields
especially in semi-supervised learning also known as transductive
learning. The potential of this regularization has been demonstrated
for many applications including digit recognition and text classifi-
cation [5], web-page categorization [6], hyperspectral data classifi-
cation [7], manifold learning [8], and image denoising [9] to cite a
few.

The proposed strategy is closely related to the work in [10]
where the authors use a Total Variation (TV) regularization on top of
sparse `1-norm regularized unmixing. Similarly to [10], this com-
munication advocates the use of the graph Laplacian regularization
on top of `2,1-norm regularized unmixing. TV is restricted to the
assumption of local spatial similarity, and assumes that a pixel is
only similar to its four neighbors. However, the graph Laplacian
regularization is more flexible in the sense that it allows to con-
nect a pixel with as many other pixels in the image as long as they
are similar. [11] extends the TV spatial regularization to nonlinear
unmixing models. Several methods in the literature incorporate
other spatial or spectral-spatial information in the unmixing prob-
lem such as [12–15]. For a detailed review of spectral unmixing
methods and endmember extraction techniques with spatial infor-
mation, the reader is referred to [16]. Very recently, the authors
of [17] used the graph Laplacian regularization on top of sparse `1/2
nonnegative matrix factorization (NMF) for blind unmixing. The
algorithm uses alternate minimization in order to simultaneously
estimate the endmembers and the abundances. In this work, we
use the ADMM algorithm [18] which allows to take into account
the abundances sum-to-one and positivity constraints, and a Group
lasso regularizer frequently incorporated in unmixing to allow the
the selection of endmembers from a large library [19]. Moreover,
we exploit the graph structure and use an algorithm [20] similar
to normalized graph-cuts [21] in order to partition the graph into
several sub-graphs. Unmixing is then performed on each subgraph
separately which allows to reduce the computational complexity of
the algorithm.

The paper is organized as follows. Section 2 introduces the hy-
perspectral and graph frameworks, Section 3 incorporates the graph
Laplacian regularization on top of sparse unmixing, Section 4 is de-
voted to testing the proposed approach using synthetic and real data.
Finally, Section 5 concludes the paper.

2. HYPERSPECTRAL IMAGE TO GRAPH MAPPING

Let us first introduce the linear mixing model and some notations
specific to the hyperspectral unmixing framework. In matrix form,
the linear mixing model is given by

S = RA+E (1)

withS = (s1, . . . , sN ),R = (r1, . . . , rM ),A = (a1, . . . ,aM )>.
Here, sj is the L-dimensional spectrum of the j-th pixel, L is the
number of frequency bands, ri is L-dimensional spectrum of the
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i-th endmember, M denotes the number of endmembers, ai is the
M -dimensional abundance map of the i-th endmember, N is the
number of pixels in the image, and E is an additive Gaussian noise.
All vectors are column vectors. Model (1) means that the (i, j)-th
entry Aij of A is the abundance of the endmember ri in pixel sj .
Two physical constraints on the abundances are usually considered,
the non-negativity and sum-to-one constraints: Aij ≥ 0 for all
(i, j), and

∑M
i=1Aij = 1 for all j.

The first step in the proposed graph-based unmixing approach
consists in mapping the hyperspectral image to a graph G where
each node represents a pixel’s spectra. LetW be theN ×N affinity
matrix of the graph, the entries Wij ofW satisfy the following con-
ditions. If pixels i and j are similar then Wi,j is set to some positive
value proportional to their degree of similarity. If pixels i and j are
dissimilar then Wij tends to zero. There are different heuristics for
choosing Wij . For example, this can be done by using a Gaussian
kernel

Wij = exp

(
−‖si − sj‖

2

2σ2

)
(2)

where σ is the kernel’s bandwidth [22, 23]. In addition to the pixel’s
spectrum, each pixel can be defined by a vector of spatial features,
for instance, the average of its surrounding area, its coordinates in the
image. This spatial information leads to a second spatial affinity ma-
trix which can be easily combined with the spectral one [7]. Finally,
k-nearest neighbors and thresholding are commonly used in order to
set to zero small weights in W [24]. The authors of [7, 22, 23] pro-
pose different strategies for defining an affinity matrix that takes into
account both the spatial and the spectral information of a pixel.

3. LAPLACIAN REGULARIZED UNMIXING

As previously mentioned, we consider the following interpretation
of the graph. If two nodes are connected, then they are likely to
have similar abundances. We shall now incorporate this information
in the unmixing problem using the graph Laplacian regularization.
This leads to the following convex optimization problem:

minA
1
2
‖S −RA‖2F + λtr(ALA>) + µ

∑M
k=1 ‖ak‖2

subject to Aij ≥ 0 ∀ i, j∑N
i=1Aij = 1 ∀ j.

(3)
where L is the graph Laplacian matrix given by L = D −W , D
is a diagonal matrix with Dii =

∑N
j=1Wij , µ ≥ 0 and λ ≥ 0 are

two regularization parameters. The first term in (3) is a data fidelity
term based on the `2-norm. The second term is the graph Laplacian
regularization. To see the relevance of this regularization in (3), we
rewrite it as follows [25]:

tr(ALA>) = 1

2

M∑
i=1

N∑
j=1

∑
k∼j

Wjk(Aij −Aik)2 (4)

where k ∼ j indicates that pixels j and k are similar (Wjk 6= 0).
For every abundance map (row inA), this term penalizes the square
of the difference between the abundances of similar pixels propor-
tionally to their degree of similarity. This quantity can also be seen
as a measure of the discrepancies between the abundance estimates
weighted by their degree of similarity Wjk. The regularization pa-
rameter λ controls the extent at which similar pixels estimate simi-
lar abundances. The third term is the `2,1-norm regularization also
known as the Group lasso. We consider that R is a large dictionary
of endmembers, and only few of these endmembers are present in

the image. For this reason, we use the Group Lasso regularization
to induce group sparsity [26] in the estimated abundance matrix by
possibly driving several rows ak ofA to zero, as proposed in [19].

It is important to note that the first and second term of the cost
function (3) are separable with respect to the columns and rows ofA
respectively. These two terms can be grouped into a single quadratic
form. However, the resulting Quadratic Problem has N ×M vari-
ables, and is not separable with respect to the columns or the rows
of A. The solution of problem (3) can be obtained in a simple and
flexible manner using the Alternating Direction Method of Multipli-
ers [18].

3.1. ADMM algorithm

We consider the canonical form and the following variable splitting:

minX,Y ,Z
1
2
‖S −RX‖2F + λtr(Y LY >) + µ

∑M
k=1 ‖zk‖2

+I(Z)
subject to BX +CZ = F

X = Y
(5)

with

B =

(
I

1>

)
, C =

(
−I
0>

)
, F =

(
0

1>

)
,

where I is the indicator of the positive orthant guarantying the pos-
itivity constraint, that is, I(Z) = 0 if Z � 0 and +∞ otherwise.
The constraints impose the consensus X = Y , X = Z, and the
sum-to-one. In matrix form, the augmented Lagrangian for prob-
lem (5) is given by

Lρ(X,Y ,Z,V ,Λ) =
1

2
‖S −RX‖2F + µ

M∑
k=1

‖zk‖2 + I(Z)

+ λtr(Y LY >) + tr(V >(X − Y )) +
ρ

2
‖X − Y ‖2F

+
ρ

2
‖BX +CZ − F ‖2F + tr(Λ>(BX +CZ − F ))

(6)

where Λ and V are the matrices of the Lagrange multipliers, and
ρ is the penalty parameter. The flexibility of the ADMM lies in the
fact that it splits the initial optimization problem into three subprob-
lems. At iteration k + 1, the ADMM algorithm is outlined by four
sequential steps.

X minimization step: The augmented Lagrangian is quadratic with
respect to X . The minimizer has an analytical expression that is
obtained by setting the gradient of the augmented Lagrangian with
respect toX to zero:

Xk+1 = (R>R+ ρB>B + ρIM )−1(R>S

−B>[Λk + ρ (CZk − F )]− V k + ρY k).
(7)

Y minimization step: Similarly to the first step, Y k+1 is obtained
by setting the gradient of the augmented Lagrangian with respect to
Y to zero, which yields:

Y k+1 = (V k + ρXk+1)(2λL+ ρIN )−1. (8)

Assume that we did not use Y , and assigned the same ADMM vari-
ableX for both the fidelity term and the graph Laplacian regulariza-
tion. In this case, theX minimization reduces to solving a Sylvester
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equation [27]. The exact solution of this problem can not be com-
puted efficiently due to the high dimensionality of the problem. In
fact it requires the inversion of a NM ×NM matrix where N and
M can be both very large. Iterative methods have been proposed to
perform this task [28]. These iterative methods are similar to the first
two steps of our ADMM solution in the sense that the initial variable
is split into two variables and alternating updates of these variables
are performed.

Z minimization step: After discarding the terms that are indepen-
dent of Z, the minimization of the augmented Lagrangian with re-
spect to Z reduces to solving the following problem:

minZ µ
∑M
k=1 ‖zk‖2 + tr(Λ>CZ)

+ ρ
2
‖BX +CZ − F ‖2F

subject to Z � 0.
(9)

This minimization step can be split intoM problems given the struc-
ture of matricesB andC, one for each row of Z, that is,

minz
1
2
‖z − v‖22 + α‖z‖2 + I(z) (10)

where v = x + ρ−1λ, α = ρ−1µ. Vectors λ, x and z correspond
to a given row of Λ,X andZ, respectively. The minimization prob-
lem (10) admits a unique solution given by the proximity operator of
function f(z) = α‖z‖2 + I(z):{

z∗ = 0 if ‖(v)+‖2 < α

z∗ =
(
1− α

‖(v)+‖2

)
(v)+ otherwise, (11)

where (·)+ = max(0, ·). Operator (11) was recently used in [29,
30]. The derivation of this operator can be found in [30].

Update of the Lagrange multipliers Λ and V : The last step con-
sists of updating the Lagrange multipliers Λ and V using the fol-
lowing expressions

Λk+1 = Λk + ρ(BXk+1 +CZk+1 − F ),
V k+1 = V k + ρ(Xk+1 − Y k+1).

(12)

As suggested in [18], a reasonable stopping criterion for this iterative
algorithm is that the primal and dual residuals must be smaller than
some tolerance thresholds.

3.2. A note on complexity

Finally, we pay particular attention to the computational complexity
of the resulting ADMM algorithm. The most expensive step is the Y
minimization, since it requires solving a linear system with N vari-
ables (8), N being very large in real images. We propose to exploit
the graph representation of the pixels and apply the algorithm of [20]
in order to partition the nodes of the graph into k clusters. This al-
lows to approximately solve (8) by solving k smaller linear systems,
where the number of variables is now smaller than N . Note that the
overall optimization problem (3) can not be similarly separated into
k distinct problems due to the group lasso regularization.

The purpose of this step is to reduce the computational com-
plexity of (8) while preserving the global knowledge captured by the
graph structure. For this reason, the segmentation must be conser-
vative, in the sense that k should not be very large. In fact, a seg-
mentation into too many clusters with strong connections between
inter-cluster pixels could create undesirable cluster-like artifacts in
the abundance maps.
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Fig. 2. Abundance maps for Alunite obtained using SUnSAL-TV
and the proposed GLUP-Lap approach respectively.

4. EXPERIMENTS

The performance of the proposed approach was first evaluated using
two simulated data sets, namely, Data1 and Data2 designed with
different levels of homogeneity. Data1 is the same data set used
in the experiments of [10, 11]. The image consists of 75 × 75
pixels generated using 5 endmembers [r1, r2, · · · r5]. The library
R used in the experiments contains in total 230 endmembers with
224 spectral bands extracted from the USGS site1. The background
is a mixture of the 5 endmembers with the following abundances
[0.1149 0.0741 0.2003 0.2055 0.4051]>. There are 25 squares in
the image disposed in a 5 × 5 grid fashion (see Figure 1). Each
square is an homogeneous surface where its pixels have the same
abundances. Most of the abundances in Data1 verify the assumption
of local consistency. Data2 is generated similarly to Data1, except
that it is created using 15 distinct endmembers, and the squares in
each row are identical. In addition to local consistency, there exists
distant homogeneous surfaces in Data2 that are identical. As a result
a pixel has local similar neighbors and distant ones too.

The first step in the proposed approach consists of defining the
affinity matrix W . In all the experiments we simply threshold the
square of the spectral distance and set the weights according to (13):{

Wij = 1 if ‖si − sj‖22 < d2min

Wij = 0 otherwise, (13)

where d2min represents the maximum squared spectral distance re-
quired in order to consider that two pixels are similar. As previously
explained in Section 2, there are different heuristics for choosing the
weights. (13) was sufficient in our experiments to demonstrate the
effectiveness of the method. The algorithm described in [31] is then
used to cut the graph into 10 disjoint subgraphs and then unmixing
is performed on each subgraph.

We compared the performances of FCLS [4] and SUnSAL-
TV [10] with the proposed approach denoted by GLUP-Lap (Group
Lasso with Unit sum, Positivity constraints and graph Laplacian reg-
ularization). We used the Root Mean Square Error (RMSE) defined
as RMSE = ( 1

NL
× ‖Â − A‖2F )

1
2 as the evaluation metric. We

tested SUnSAL-TV and GLUP-Lap for different combinations of
the sparsity and the spatial tuning parameters µ and λ. Table 1 re-
ports the best performance of each algorithm for a given data set and
a given SNR with the corresponding optimal pair of regularization
parameters. GLUP-Lap requires the tuning of an additional parame-
ter d2min which is also reported in the table. Both, SUnSAL-TV and
GLUP-Lap, outperformed FCLS. GLUP-Lap had the lowest RMSE

1http://speclab.cr.usgs.gov/spectral-lib.html
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(h) r7: GLUP-Lap

Fig. 1. First row: Abundance maps for endmember 2 in Data1 obtained with SNR = 30 dB. Second row: Abundance maps for endmember 7
in Data2 obtained with SNR = 30 dB. From left to right: The true abundance map, FCLS, SUnSAL-TV, GLUP-Lap. The parameters are the
reported in Table 1.

for all cases. As the SNR increases the rate at which GLUP-Lap im-
proves with respect to FCLS increases. This is due to the fact that the
observations contain less noise, thus the adjacency matrix becomes
more reliable. The simulations performed with Data2 show that this
data set is more difficult than the previous since it contains a large
number of endmembers: 15 compared to 5 in Data1. As before,
GLUP-Lap outperformed FCLS and SUnSAL-TV. It is important
to note that GLUP-Lap and SUnSAL-TV were run under the same
ADMM conditions. The penalty parameter was set to 0.05, and
the maximum number of iterations to 200 in both algorithms. The
first row of Figure 1 shows the true abundance map of the second
endmember in Data1, and the estimated maps obtained with FCLS,
SUnSAL-TV and GLUP-Lap with SNR=30dB. It can be seen from
these maps that both SUnSAL-TV and GLUP-Lap estimated smooth
abundance maps compared to FCLS, with SUnSAL-TV having the
smoothest map. However, the squares that were not correctly esti-
mated by SUnSAL-TV were better estimated with GLUP-Lap. This
is possibly due to the fact that the pixels in these squares were en-
couraged by the graph to have similar estimates and thus appeared as
consistent blocks in the GLUP-Lap result. The same observation can
be made for the abundance map of r7 in Data2. This endmember is
only present in squares of the fourth row. The second row of Figure
1 shows that FCLS was not able to correctly estimate the abundance
of this endmember in the figure. SUnSAL-TV, possibly due to the
links it form with its surrounding estimates also failed to correctly
estimate its abundances. Despite the difficulty of this abundance
map, GLUP-Lap perfectly recovered the abundances. Even if the
5 squares are separated, their pixels are possibly connected in the
graph and collaboratively estimate their abundances.

We also tested the proposed approach on a subset of the Cuprite
scene 2 provided by the AVIRIS spectrometer. This scene was cap-
tured over a mining district in Nevada, the subset we use has 191×
250 pixels and 188 spectral bands over the wavelength interval 400−
2500 nm. Figure 2 shows the abundance maps of Alunite obtained

2available at http://www.ehu.eus/ccwintco

using SUnSAL-TV and GLUP-Lap respectively. In the former case,
µ and η were both set to 10−3 and the execution time was 1281
seconds. In the latter case, µ and η were set to 10−3 and 0.1 re-
spectively, d2min was set to 0.005, and the execution time was 5275
seconds. It can be seen from Figure 2 that the abundance maps es-
timated by GLUP-Lap are less smooth than SUnSAL-TV. However,
they conserved relatively more details.

Table 1. RMSE obtained with different values of the SNR, with the
optimal values of the couple (µ; λ) for SUnSAL-TV and GLUP-Lap,
the penalty parameter was set to ρ = 0.05 for both algorithms.

SNR 20 dB SNR 30 dB SNR 40 dB
Data1

FCLS 0.0262 0.0173 0.0101
SUnSAL 0.0156 0.0075 0.0034

TV (0.05; 0.05) (5 10−3; 0.01) (10−3; 5 10−3)
GLUP 0.0152 0.0049 0.0012

Lap (0.01; 0.5) (5 10−4; 0.5) (5 10−5; 0.5)
d2min = 2.5 d2min = 0.3 d2min = 0.05

Data2
FCLS 0.0307 0.0240 0.0151

SUnSAL 0.0250 0.0132 0.0073
TV (0.05; 0.3) (10−4; 0.005) (5 10−5; 10−3)

GLUP 0.0174 0.0078 0.0023
Lap (0.01; 1) (10−4; 1) (5 10−5; 1)

d2min = 1.8 d2min = 0.5 d2min = 0.5

5. CONCLUSION

In this work we used an affinity matrix of the image in order to in-
corporate the graph Laplacian regularization within the sparse un-
mixing formulation. We showed that the resulting graph regularized
framework has potential in improving the abundances’ estimation
accuracy and creates more consistent areas at the local and global
level. Future work includes studying the potential of spatial-spectral
weights for further improving the performance.
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