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ABSTRACT

A missing intensity restoration method via adaptive selection of per-
ceptually optimized subspaces is presented in this paper. In order to
realize adaptive and perceptually optimized restoration, the proposed
method generates several subspaces of known textures optimized in
terms of the structural similarity (SSIM) index. Furthermore, the
SSIM-based missing intensity restoration is performed by a projec-
tion onto convex sets (POCS) algorithm whose constraints are the
obtained subspace and known intensities within the target image. In
this approach, a non-convex maximization problem for calculating
the projection onto the subspace is reformulated as a quasi-convex
problem, and the restoration of the missing intensities becomes fea-
sible. Furthermore, the selection of the optimal subspace is realized
by monitoring the SSIM index converged in the POCS algorithm,
and the adaptive restoration becomes feasible. Experimental results
show that our method outperforms existing methods.

Index Terms— Missing intensity restoration, perceptually opti-
mized algorithm, adaptive subspace selection, POCS algorithm.

1. INTRODUCTION
Since missing intensity restoration can afford a number of funda-
mental applications such as image inpainting, error concealment and
old film restoration, many researchers have proposed methods re-
lated to this study [1]–[21]. A pioneering work based on texture syn-
thesis was proposed by Efros et al. [1]. In recent years, a fragment-
based restoration method and an exemplar-based method have been
developed by Drori et al. [5] and Criminisi et al. [6, 7], respectively,
and their methods became benchmarking methods in this field.

In addition to the above approach, several restoration meth-
ods which approximate each local patch within a target image by
low-dimensional subspaces have been proposed. Since missing
intensity restoration is one of ill-posed inverse problems, the deriva-
tion of its solution becomes feasible based on the approximation
using such low-dimensional subspaces. Then their restoration per-
formance tends to depend on multivariate analysis algorithms used
for obtaining these subspaces. Amano et al. proposed an effective
PCA-based method that reconstructs missing textures [11], and by
introducing the kernel methods into PCA [22], its improvement
can be also realized [12, 13, 14]. Furthermore, image restoration
based on sparse representation [23, 24] has intensively been stud-
ied [15]–[18]. Mairal et al. proposed a representative work based
on the sparse-representation [15], and Xu et al. also proposed an
improved exemplar-based method using the sparse representation
[18]. In addition, several works related to the sparse representation
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have intensively been proposed, e.g., the methods based on rank
minimization [20] and neighboring embedding [21].

In most existing methods, generation of low-dimensional sub-
spaces and projection onto them are performed based on minimiza-
tion of mean square error (MSE). Although the MSE is the simplest
metric used as a quality measure, it is well known that the MSE
cannot reflect perceptual qualities [25, 26]. Recently, there have
been proposed many image quality assessment algorithms [25]–[28].
Among them, the structural similarity (SSIM) index [28] is a repre-
sentative measure, and it is reported that the SSIM index outper-
forms the MSE and its variants in several image processing appli-
cations [29, 30]. Therefore, by introducing the SSIM index, the use
of perceptually optimized subspaces for the restoration can be ex-
pected. Furthermore, we have to note another important point. Since
each target image is composed of several different textures, the sub-
space should be generated for each kind of texture, and the restora-
tion should be also performed with adaptively selecting the optimal
subspaces.

This paper presents a missing intensity restoration method via
adaptive selection of perceptually optimized subspaces. Our method
generates a subspace optimized in terms of the SSIM index for each
kind of texture within a target image in order to restore missing ar-
eas based on the optimal subspaces. Specifically, the missing inten-
sity restoration is performed by using a projection onto convex sets
(POCS) algorithm [31] whose constraints are one selected subspace
and known intensities within the target image. In this approach,
a non-convex maximization problem for calculating the projection
onto the subspace is reformulated as a quasi-convex problem to ob-
tain the perceptually optimized solution. Furthermore, we monitor
the SSIM index converged in the POCS algorithm to select the sub-
space optimal for restoring the target missing areas. Consequently,
the adaptive and perceptually optimized missing intensity restoration
becomes feasible.

2. STRUCTURAL SIMILARITY INDEX
The SSIM index is a similarity measure between two vectors [28].
Given two vectors x1 and x2 ∈ Rn, the SSIM index is defined as

SSIM(x1, x2) =

(
2µx1µx2 +C1

) (
2σx1 ,x2 +C2

)(
µ2

x1
+ µ2

x2
+C1

) (
σ2

x1
+ σ2

x2
+C2

) ,
where µxi and σ2

xi
(i = 1, 2) are the mean and the variance of xi,

respectively, and σx1 ,x2 is the cross covariance between x1 and x2.
Furthermore, the constants C1 and C2 are necessary for avoiding in-
stability when the denominators are very close to zero. The SSIM
index is defined by separately calculating three similarities in terms
of luminance, variance and structure, which are derived on the basis
of the human visual system (HVS) not accounted for by the MSE.
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Therefore, perceptually optimized restoration is expected by using
this similarity measure.

3. ADAPTIVE AND PERCEPTUALLY OPTIMIZED
MISSING INTENSITY RESTORATION

The missing intensity restoration method based on adaptive selec-
tion of perceptually optimized subspaces is presented in this section.
In our method, a patch f (w × h(= N) pixels) including missing ar-
eas Ω is clipped from a target image according to the patch priority
determined based on [7]. Then the proposed method tries to restore
the missing intensities within Ω from the other known areas Ω̄ of the
target patch f . For the following explanation, we define two vec-
tors, whose elements are respectively intensities within f and Ω̄, as
x ∈ RN and y ∈ RNΩ̄ , where NΩ̄ is the number of pixels within the
known areas Ω̄.

The proposed method generates a subspace optimized in terms
of the SSIM index for each kind of texture within the target image
and restores the target patch f by adaptively selecting the optimal
subspace. Therefore, we first perform clustering of known patches
within the target image by using the SSIM-based subspaces (See
3.1). Next, we perform the SSIM-based missing intensity restoration
including the adaptive selection of the optimal subspace, i.e., the
optimal cluster (See 3.2).

3.1. Clustering Algorithm Using SSIM-Based Subspaces

In order to perform the clustering of textures within the target image,
we clip known patches fi (i = 1, 2, · · · , L) whose size is the same as
that of f in the same interval. For each patch fi, we define a vector
xi ∈ RN , which corresponds to x. Then we perform their clustering
into K clusters that maximizes the following criterion:

C =
K∑

k=1

Lk∑
j=1

SSIM(xk
j , x̂

k
j), (1)

where xk
j ( j = 1, 2, · · · , Lk) is xi belonging to cluster k, L =

∑K
k=1 Lk,

and x̂k
j = Ûkâk

j . Furthermore, Ûk ∈ RN×Dk
is a Dk (< N) dimensional

orthonormal basis matrix, and âk
j ∈ RDk

is a coefficient vector for
representing xk

j . The proposed method iteratively performs assign-
ment of each known patch maximizing Eq. (1) and update of the
basis matrix Ûk. In the assignment procedures, we calculate the op-
timal coefficient vector âk

j maximizing SSIM(xk
j , x̂

k
j) by the steepest

ascent algorithm. Different from the algorithm shown in the fol-
lowing subsection, we adopt this simple optimization algorithm for
reducing the complexity of our method. Furthermore, we show the
details of the procedures for calculating the basis matrix Ûk from xk

j

( j = 1, 2, · · · , Lk) below.
The proposed method tries to calculate the basis matrix Ûk in-

cluding Dk orthonormal bases which span the subspace optimized
in terms of the SSIM index. Since it is difficult to obtain all bases
optimized with the SSIM index, simultaneously, our method adopts
the simplest algorithm selecting the optimal bases one by one, which
is similar to some matching pursuit algorithms [32, 33]. The details
of dth (d = 1, 2, · · · ,Dk) optimal basis calculation are shown below.
In dth iteration, i.e., dth optimal basis calculation, we first define the
following vector approximating xk

j ( j = 1, 2, · · · , Lk):

xk
j,(d) =

[
Ûk

(d−1) uk
(d)

] [ak
j,(d−1)
ak

j,(d)

]
,

where Ûk
(d−1) = [ûk

(1), û
k
(2), · · · , ûk

(d−1)] ∈ RN×(d−1) is a fixed matrix con-
taining d − 1 bases previously calculated in the d − 1 iterations. We

estimate the optimal orthonormal basis ûk
(d) of uk

(d) that provides the
best representation performance for all vectors xk

j ( j = 1, 2, · · · , Lk)
based on the SSIM index. Specifically, it can be calculated by solv-
ing the following problem:{

ûk
(d), â

k
(d)

}
= arg max

uk
(d) ,a

k
(d)

Lk∑
j=1

SSIM(xk
j , x

k
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subject to ||uk
(d)||2 = 1

uk
(d)
′ûk

(d̃) = 0 (d̃ = 1, 2, · · · , d − 1), (2)

where ak
(d) is a set of ak

1,(d), a
k
2,(d), · · · , ak

Lk ,(d)
, and ak

j,(d) = [ak
j,(d−1)

′, ak
j,(d)]

′

( j = 1, 2, · · · , Lk). It should be noted that vector/matrix transpose
is denoted by the superscript ′. The proposed method calculates
the optimal basis ûk

(d) and the optimal coefficient vectors âk
j,(d)

( j = 1, 2, · · · , Lk) by applying the constrained cyclic coordinate
ascent algorithm to Eq. (2). Although the cyclic coordinate ascent
algorithm does not necessarily provide the global optimal solution
in Eq. (2), but we adopt this algorithm in the same reason as that
in the assignment procedures. By iterating the above procedures
Dk times, we can calculate the optimal Dk orthonormal bases ûk

(d)

(d = 1, 2, · · · ,Dk) to obtain Ûk based on the SSIM index.

3.2. Missing Intensity Restoration Algorithm

The proposed method restores the missing areas Ω within the tar-
get patch f based on the POCS algorithm [31] whose constraints are
shown below.
[Constraint 1]
The intensities within Ω̄ are fixed since they are known within the
target patch f . Thus, y = Ex is satisfied, where E ∈ RNΩ̄×N is a bi-
nary matrix extracting only the known intensities in Ω̄.
[Constraint 2]
The vector x is in the cluster k’s subspace spanned by the Dk or-
thonormal bases ûk

(d) (d = 1, 2, · · · ,Dk) in Ûk.
By projecting the target vector x onto these two closed convex

sets iteratively, the proposed method estimates the restoration result
x̂k ∈ RN by cluster k. In each iteration, it is necessary to calculate the
projection onto the subspace spanned by the Dk orthonormal bases
ûk

(d) (d = 1, 2, · · · ,Dk) in Ûk based on the SSIM index. Specifically,
in tth iteration, we have to obtain the following linear combination:

x̂k
(t) = Ûkâk

(t), (3)

and x̂k
(t) ∈ RN is the approximation result of xk

(t) satisfying Constraint

1, where âk
(t) ∈ RDk

satisfies

âk
(t) = arg max

ak
(t)

SSIM
(
xk

(t), Û
kak

(t)

)
. (4)

In the above equation,

SSIM
(
xk

(t), Û
kak

(t)

)
=

 2µxk
(t)
µÛkak

(t)
+C1

µ2
xk

(t)
+ µ2

Ûkak
(t)
+C1


 2σxk

(t) ,Û
kak

(t)
+C2

σ2
xk

(t)
+ σ2

Ûkak
(t)
+C2


=

 2
(

1
N 1′xk

(t)

) (
µÛk

′ak
(t)

)
+C1(

1
N 1′xk

(t)

)2
+

(
µÛk

′ak
(t)

)2
+C1


×

 2xk
(t)
′HÛkak

(t) + NC2

xk
(t)
′Hxk

(t) + ak
(t)
′Ûk′HÛkak

(t) + NC2

 , (5)
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Table 1. Performance comparison (SSIM index) between the existing methods and our method.
Test image Reference [7] Reference [8] Reference [18] Reference [11] Reference [14] Reference [21] Our method

Image 1 0.7031 0.6979 0.6608 0.6695 0.7670 0.6935 0.7792
Image 2 0.7383 0.7459 0.7419 0.6668 0.7130 0.7324 0.7508
Image 3 0.6648 0.6475 0.6891 0.5678 0.6274 0.6308 0.6772
Image 4 0.6722 0.6659 0.6948 0.5887 0.6544 0.6929 0.7432
Image 5 0.6998 0.6915 0.7019 0.6200 0.7320 0.6674 0.7463
Image 6 0.7456 0.7264 0.7497 0.6081 0.6883 0.7587 0.7849
Average 0.7040 0.6959 0.7064 0.6202 0.6970 0.6959 0.7469
Median 0.7015 0.6947 0.6984 0.6141 0.7007 0.6932 0.7486

and µÛk = 1
N Ûk′1, where 1 = [1, 1, · · · , 1]′ is an N × 1 vector. Fur-

thermore, H = I − 1
N 11′ is an N × N centering matrix, where I is the

identity matrix.
From the definition of Eq. (5), SSIM

(
xk

(t), Û
kak

(t)

)
is a non-

convex function of ak
(t). Thus, based on the calculation scheme in

[29], this function is converted into a quasi-convex problem. Specif-
ically, since the first term is a function only of µÛk

′ak
(t)

(
= ρk

(t)

)
, Eq.

(4) can be rewritten as

max
ak

(t)

 2xk
(t)
′HÛkak

(t) + NC2

xk
(t)
′Hxk

(t) + ak
(t)
′Ûk′HÛkak

(t) + NC2


subject to µÛk

′ak
(t) = ρ

k
(t). (6)

Therefore, the overall problem is reformulated to find the highest
SSIM index in Eq. (4) by searching over range of ρk

(t). Furthermore,
Eq. (6) is converted into a quasi-convex optimization problem as

min : τ

subject to

max :
(

2xk
(t)
′HÛkak

(t)+NC2

xk
(t)
′Hxk

(t)+ak
(t)
′Ûk ′HÛkak

(t)+NC2

)
≤ τ

subject to µÛk
′ak

(t) = ρ
k
(t)

 .
Then the above problem is further rewritten as

min : τ
subject tomin :

[
τ
(
xk

(t)
′Hxk

(t) + ak
(t)
′Kk

1ak
(t) + NC2

)
−

(
xk

(t)
′Kk

2ak
(t) + NC2

)]
≥ 0

subject to µÛk
′ak

(t) = ρ
k
(t)

 ,
where Kk

1 = Ûk′HÛk and Kk
2 = 2HÛk. Then the proposed method

adopts the Lagrange multiplier approach shown as follows:

L = τ
(
xk

(t)
′Hxk

(t) + ak
(t)
′Kk

1ak
(t) + NC2

)
−

(
xk

(t)
′Kk

2ak
(t) + NC2

)
+λ

(
µÛk

′ak
(t) − ρk

(t)

)
.

By calculating the solution of the above problem, the optimal coef-
ficient vector âk

(t) can be estimated, and x̂k
(t) in Eq. (3) is obtained.

It should be noted that τ is obtained by using the standard bisection
procedures. In this way, we can calculate the restoration result x̂k by
cluster k based on the POCS algorithm.

The subspace spanned by the bases in Ûk used in Constraint 2
enables the optimal SSIM-based approximation of cluster k’s ele-
ments. Therefore, if we can classify x of the target patch f into
the optimal cluster kopt, the proposed method can perform accurate
restoration by using its optimal subspace. Unfortunately, since x
contains missing areas Ω, we cannot classify it by the algorithm
shown in the previous subsection. Therefore, in order to achieve the
classification of x, the proposed method monitors the SSIM index in

Eq. (5) converged after performing the POCS algorithm. Since this
converged SSIM index is the maximum similarity from a vector sat-
isfying Constraint 2, we use it as the criterion for the classification of
x. Then the adaptive selection of the optimal cluster kopt for the target
patch including the missing areas becomes feasible. The proposed
method regards the result x̂kopt

obtained by the selected cluster kopt as
the final output. Consequently, by performing the non-conventional
approach, which adaptively selects the optimal subspace, we can per-
form the adaptive and accurate restoration.

4. EXPERIMENTAL RESULTS

In order to verify the performance of our method, experimental re-
sults are shown in this section. We prepared six text images shown
in Fig. 1 and added missing areas to these images. For these test
images, we restored the missing areas by using the proposed method
and the existing methods [7, 8, 18, 11, 14, 21]. We used the represen-
tative exemplar-based method [7] and its improved versions [8, 18].
Furthermore, the subspace-based methods based on PCA [11], ker-
nel PCA [14] and neighboring embedding [21] were also adopted.
The exemplar-based methods [7, 8, 18] select the optimal patches
based on the MSE, and the subspace-based methods [11, 14, 21]
also perform the MSE-based subspace generation and restoration.
Therefore, we used these existing methods for the comparisons of
our method. In this experiment, the patch size was fixed to 15, and
the number of training patches became smaller. Since this compari-
son scheme was adopted in several papers, we also adopted such dif-
ficult conditions in order to make the difference in the performance
of the proposed method and the existing methods clearer.

The results obtained by the existing methods and our method are
shown in the third and forth columns of Fig. 1, respectively. We only
show the result of one existing method for each test image due to the
limitation of spaces1. As shown in Fig. 1, the proposed method
realizes successful missing intensity restoration.

Furthermore, in order to quantitatively evaluate the performance
of the proposed method, we show the SSIM index calculated from
the restoration results in Table 1. The results shown in this table were
calculated from only the restored areas. From the obtained results, it
can be seen that the proposed method also achieves the improvement
in terms of the SSIM index. As shown in the previous section, the
proposed method realizes the subspace generation and the adaptive
restoration based on the optimal subspace according to the better
quality measure, i.e., the SSIM index. Therefore, the perceptually
optimized restoration becomes feasible by the proposed method.

1All of the restoration results obtained from the six test images in Fig.
1 by our method and the existing methods [7, 8, 18, 11, 14, 21] can be
confirmed in the following Web site.
http://www-lmd.ist.hokudai.ac.jp/wp/wp-content/uploads/ICASSP2015-
Ogawa.pdf
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Original images Corrupted images Restoration results by Restoration results by
including missing areas existing methods the proposed method

Fig. 1. Restoration results obtained by the existing methods and our method. Six test images are used, and they respectively correspond to
Images 1–6. Note that the existing methods used for restoring Images 1–6 are respectively Ref [7], Ref [8], Ref [18], Ref [11], Ref [14] and
Ref [21]. The sizes of Images 1–6 are 640× 480 pixels, 640× 480 pixels, 480× 360 pixels, 480× 360 pixels, 640× 480 pixels and 480× 360
pixels, respectively. The percentages of missing areas are 5.5%, 5.4%, 11.3%, 10.7%, 6.2% and 8.9% in Images 1–6, respectively.

5. CONCLUSIONS

This paper has presented a missing intensity restoration method via
adaptive selection of perceptually optimized subspaces. The pro-
posed method performs the generation of subspaces optimized in
terms of the SSIM index. Then, by using the POCS algorithm,

whose constraints are the obtained subspace and the known intensi-
ties, the SSIM-based restoration becomes feasible. In this approach,
the adaptive selection of the optimal subspace for the restoration is
realized by monitoring the SSIM index converged in the POCS al-
gorithm. Consequently, the improvement of our method over the
existing methods can be confirmed.
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