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ABSTRACT 
 
Absorption, scattering, and color distortion are three major 
issues in underwater optical imaging. Light rays traveling 
through water are scattered and absorbed according to their 
wavelength. Scattering is caused by large suspended 
particles that degrade optical images captured underwater. 
Color distortion occurs because different wavelengths are 
attenuated to different degrees in water; consequently, 
images of ambient underwater environments are dominated 
by a bluish tone. In the present paper, we propose a novel 
underwater imaging model that compensates for the 
attenuation discrepancy along the propagation path. In 
addition, we develop a fast weighted guided normalized 
convolution domain filtering algorithm for enhancing 
underwater optical images in shallow oceans. The enhanced 
images are characterized by a reduced noised level, better 
exposure in dark regions, and improved global contrast, by 
which the finest details and edges are enhanced significantly. 

Index Terms— Underwater image, image enhancement, 
domain filter, spectral properties, wavelength compensation 
 

1. INTRODUCTION 
 
Following the recent development of autonomous 
underwater vehicles (AUVs), its application has been 
limited by issues in recognizing underwater objects. In the 
last two decades, sonars have been widely used for 
detecting and recognizing objects in underwater 
environments. However, for short-range identification, 
vision sensors must be used instead of sonars because 
sonars yield low-quality images [1]. 

In contrast to common photographs, underwater optical 
images suffer from poor visibility owing to the medium, 
which causes scattering, color distortion, and absorption. 
Large suspended particles cause scattering similar to the 
scattering of light in fog or turbid water that contain many 
suspended particles. Color distortion occurs because 
different wavelengths are attenuated to different degrees in 
water; consequently, images of ambient underwater 
environments are dominated by a bluish tone, because 
higher wavelengths are attenuated more quickly. Absorption 
of light in water substantially reduces its intensity. The 
random attenuation of light causes a hazy appearance as the 

light backscattered by water along the line of sight 
considerably degrades image contrast. In particular, objects 
at a distance of more than 10 m from the observation point 
are almost indistinguishable because colors are faded as 
characteristic wavelengths are filtered according to the 
distance traveled by light in water [2].  
    Many researchers have developed techniques to restore 
and enhance underwater images. Schechner et al. exploited 
a polarization filter to compensate for visibility degradation 
[3], while Bazeille et al. proposed an image pre-processing 
pipeline for enhancing images in turbidity water [4]. Fattal 
designed a graphic-theory-based independent-component 
analysis model to estimate the synthetic transmission and 
shading for recovering clean images [5]. He et al. estimated 
the dark channel prior through over 5000 nature images, 
then used soft matting to refine the depth map, and finally 
obtained clear images [6]. Nicholas et al. improved the dark 
channel prior and used the graph-cut method instead of soft 
matting to refine the depth map [7]. Hou et al. combined a 
point spread function and modulation transfer function to 
reduce the effects of blurring [8]. Ouyang et al. proposed 
bilateral filtering based on an image deconvolution method 
[9]. Ancuti et al. used an exposed fusion method in a turbid 
medium to reconstruct a clear image [10]. Chiang et al. 
considered the effects of variations in wavelength on 
underwater imaging and obtained the reconstructed image 
by using the dark channel prior model [11]. 
    Although the aforementioned approaches can enhance the 
image contrast, they have several drawbacks that reduce 
their practical applicability. First, the imaging equipment is 
difficult to use in practice (e.g., a range-gated laser imaging 
system, which is rarely applied in practice [8, 9]). Second, 
multiple input images are required [3] (e.g., different 
polarization images or different exposed images) for fusing 
a high-quality image. Third, the image processing 
approaches are not suitable for underwater images [4, 6, 7] 
as they ignore the imaging environment, in addition to being 
time consuming. Fourth, too much manual operation is 
needed in processing, which leads to lack of intelligence [5]. 
    In an underwater environment, the captured images are 
significantly influenced by inherent optical properties (e.g., 
wavelength, scatter, and absorption). Inspired by Chiang’s 
work [11], in the present paper, we propose a novel 
shallow-ocean optical imaging model and a corresponding 
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enhancement algorithm. We first estimate the depth map 
through dark channels. Second, considering the positions of 
the lighting lamp, camera, and imaging plane, we develop a 
rational imaging model. The effects of scattering are 
removed by using a weighted guided normalized 
convolution (WGNC) domain filter. Finally, color 
correction is performed by spectral properties. In our 
experiments conducted for verifying our proposed model 
and algorithm, we used a commercial RGB camera and 
natural underwater light. The performance of the proposed 
method is evaluated both analytically and experimentally. 
 

2. UNDERWATER IMAGING MODELLING 
 
Underwater imaging models generally follow a standard 
attenuation model to accommodate wavelength attenuation 
coefficients. In this paper the Koschmieder Model [12] is 
adopted which has been estimated as a description of the 
atmospheric effects of weather on the observer. However, 
for underwater imaging, the observed irradiance is linear 
combination attenuated in the route of sight and the 
scattered ambient light as depicted in Figure 1. Therefore, 
modified Koschmieder model has been adapted for 
underwater lighting conditions. 
 

 
Fig. 1.  Underwater Imaging Model. Light directly 
transmitted from the scene point x will be wavelength 
dependent exponentially attenuated over camera-object 
distance d and superimposed by the ambient illumination at 
depth D.  

    The modified Koschmieder model can be expressed as 
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where J(x) is the real scene at depth D(x),  is the 

normalized radiance of a scene point, d is the distance from 
the scene point to the camera and k is the total beam 
attenuation coefficient which is nonlinear and dependent on 
the wavelength. 

The authors of [11] found that the red color channel is the 
dark channel of underwater images. During our experiments, 
we found that the lowest pixel value of the RGB channels in 
turbid water is not always the red color channel; the blue 
color channel is sometimes the lowest channel. This is 
usually caused by artificial light in imaging. Although light 

of red wavelength is easily absorbed when it propagates in 
water, the distance between the camera and object is not 
sufficient for light of red wavelength to be significantly 
absorbed. The blue channel is absorbed the least. 
Consequently, in this paper, we take the dual-channel (red 
and blue) value as a rough depth map. 

Our method is based on [13], where the transmission is 
initialized using an underwater median dark channel prior 
(UMDCP).  As mentioned before, we found that turbidly 
underwater images exhibited a mostly dark image 
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where  is a square window of sizes 5×5 or 7×7. For 

each pixel located at (m, n) of the square window  , the 
lower value from the red and blue color channels is chosen. 
The proposed method can prevent the halo effect around 
occlusion boundaries.   
    Accordingly, the coarse estimate of transmission is 
obtained by 
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where 98.0 for most scenes. 
 

3. PROPOSED METHOD 
 
3.1. Weighted Guided Normalized Convolution Domain 
Filtering 
In the previous subsection, we roughly estimated the 
camera–object distance )(ˆ xd . However, its depth map 

contains mosaic effects and produces less accurate images. 
Therefore, we use a WGNC domain filter to reduce the 
mosaic effects. In this section, we introduce the constant 
time algorithm to develop the WGNC domain filter. 

Use of the traditional median filter has been considered as 
an effective method for removing outliers. However, the 
traditional median filter usually leads to morphological 
artifacts such as rounded sharp corners. To address this 
problem, a weighted median filter [14] has been proposed. 
The weighted median filter is defined as 
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where W(x, y) corresponds to the weight assigned to a pixel 
y inside a local region centered at pixel x, the weight W(x, 
y) depends on the image d that can be different from V. N(x) 
is a local window near pixel x, i is the discrete bin index, 
and δ is the Dirac delta function. 

Then, the refined depth map is computed using a 
weighted median filter with 2D normalized convolution 
domain transform filtering in the spatial domain as 
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where NC(x, y) is the 1D normalized convolution domain 
filter [15], which is defined as: 
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ttHK is a normalization factor 

for x, and ))(,()x̂( xctxtt  . Using the efficient moving-

average approach to apply NC with a box filter, the box 
kernel is 
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where 3Hr  is the filter radius, δB is a Boolean 

function that equals 1 when its argument is true and 0 
otherwise, and σH is the standard deviation. The final refined 
depth map is produced by: 
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Fig. 2.  Weighted normalized convolution domain filtering. 

Figure 2 shows the pipeline of the weighted normalized 
convolution domain filter. The filter images, which preserve 
edges and filter noise on the basis of a dimensionality 
reduction strategy, have high quality while taking 
significantly less time compared to existing filters. The 
refined depth image is shown in Fig. 3. 

   
Fig.3. Depth map refinement using the weighted normalized 
convolution domain filter. (a) Input course depth image. (b) 
Refined depth image. 
 
3.2. Color Correction 
 
The authors of [11] simply corrected the scene color using 
the attenuation of light with respect to water depth. 
However, in practice, the spectral response function of a 
camera maps the relative sensitivity of the camera imaging 
system as a function of the wavelength of light. We use the 

chromatic transfer function τ for weighting the light from 
the surface to a given depth of objects as 

,
surface

object

E
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
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where the transfer function τ at wavelength λ is derived 

from the irradiance of the surface 
surfaceE  using the 

irradiance of the object 
objectE . On the basis of the spectral 

response of the RGB camera, we convert the transfer 
function to the RGB domain: 

( ),
k
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where τRGB is the weighted RGB transfer function, Cc(λ) is 
the underwater spectral characteristic function for color 
band c, c{r,g,b}, and k is the number of discrete bands of 
the spectral characteristic function of the camera. 

Finally, the corrected image is obtained from the 
weighted RGB transfer function using 

ˆ( ) ( ) ,RGBJ x J x     (11) 

where )(xJ and )(ˆ xJ  are the color-corrected and 
uncorrected images, respectively. 
 

4. RESULTS AND DISCUSSION 
 
The performance of the proposed algorithm is evaluated 
both analytically and experimentally by utilizing ground-
truth color patches. We also compare the proposed method 
with currently used state-of-the-art methods. The results 
reveal that the proposed method shows superior scattering 
removal and color balancing capabilities compared to other 
methods. 
    We tested our algorithm using simulations. Figure 4 
shows the results, and Table 1 shows the quantitative 
analysis of the results. In the simulation, we took 
OLYMPUS Tough TG-2 underwater camera, the water 
depth D(x) is 0.3 meters, and camera-object distance d (x) is 
0.8 meters. As a first step, we took the image in clean water 
and then, we captured the noisy image and added some 
turbid liquid in the tank. Size of the images is 640 × 480 
pixels.  
    Figure 4 shows the results of using different de-scattering 
methods. Bazeille’s pre-processing causes serious distortion. 
The drawback of Fattal’s method is that the background and 
foreground in the image needs to be manually determined, 
and this is difficult in practical application. Nicholas’s 
graph-cut-based method takes a lot of processing time, and 
the processed image is blurred. In comparison with He’s 
method, our approach performs better because visible 
mosaic artifacts are observed in He’s de-scattered image 
owing to the use of soft matting. In addition, there are some 
unresolved scatters around the object in Ancuti’s model. 
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Chiang’s de-scattered image has distorted colors. 

   
(a)                                             (b) 

   
                       (c)                                             (d) 

   
                      (e)                                             (f) 

   
                        (g)                                          (h) 

   
                        (i)                                          (j) 
Fig.4. Simulation results of different descattering algorithms. 
(a) Noise-free image. (b) Noisy image. (c) Ancuti’s result. 
(d) Bazeille’s result. (e) Chiang’s result. (f) Fattal’s result. 
(g) He’s result. (h) Nicholas’s result. (i) Serikawa’s result. 
(j) Our result. 
 
The method proposed in our previous work [12, 18] 
performs well in de-scattering; however, it takes a lot of 
processing time, and the selection of parameters is difficult. 
 

Table 1. Comparative Analysis of Different De-scattering Methods. 

Methods PSNR [dB] Q-MOS SSIM CPU Time [s]

Ancuti 10.7715 30.8455 0.5530 30.15 

Bazeille 9.5787 33.0082 0.4330 2.18 

Chiang 11.7472 45.7409 0.5198 21.97 

Fattal 13.9595 35.5432 0.6338 10.52 

He 21.4046 40.6062 0.8534 37.45 

Nicholas 12.4260 42.2650 0.5859 95.05 

Serikawa 26.2365 63.7723 0.9204 4.61 

The proposed 27.0520 71.1706 0.9266 4.01 

 
In addition to the visual analysis, we conducted a 

quantitative analysis, primarily from the perspective of 
mathematical statistics and the statistical parameters of the 
images by MATLAB® (see Table 1). This analysis includes 
High-Dynamic Range Visual Difference Predictor2 (HDR-
VDP2) [16], PSNR, and structural similarity index (SSIM) 
[17]. In HDR-VDP2, the Q-MOS value [16] is between 0 
(best) and 100 (worst). Table I lists the Q-MOS values of 
the pixels filtered by applying HDR-VDP2-IQA in addition 
to SSIM values measured for several images. These results 
indicate that our approach not only works well for haze 
removal but also results in lower computation time. 

 
5. CONCLUSION 

 
In this study, we have explored and successfully 
implemented novel enhancement techniques for underwater 
optical images. We have proposed a simple prior based on 
the difference in attenuation among different color channels, 
which inspired us to estimate the transmission depth map. 
We introduced weighted guided normalized convolution 
domain filtering to compensate for transmission; this has 
benefits of preserving edges, removing noise, and reducing 
computation time. Moreover, the proposed underwater 
image colorization method successfully reconstructed 
colorful underwater images that are better than the images 
produced by state-of-the-art methods. Meanwhile, our 
method is faster by parallel algorithms in C++. Furthermore, 
our proposed method overcame the limitations due to the 
influence of artificial light sources. Our experiments 
showed that the proposed methods are suitable for 
underwater optical imaging. 
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