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ABSTRACT
This paper describes a study aimed at comparing the real image sen-
sor noise distribution to the models of noise often assumed in im-
age denoising designs. Quantile analysis in pixel, wavelet, and vari-
ance stabilization domains reveal that the tails of Poisson, signal-
dependent Gaussian, and Poisson-Gaussian models are too short to
capture real sensor noise behavior. Noise model mismatch would
likely result in image denoising that undersmoothes real sensor data.

Index Terms— image denoising, image sensor, Poisson

1. INTRODUCTION

Image sensor noise is present in all commercial, professional, and
scientific cameras. Unlike fixed pattern and banding noises that are
largely predictable and therefore correctable [2,3], random phenom-
ena such as photon emission, photon transfer/recapture, dark current,
thermal noise, reset noise, quantization, etc. introduce sensor mea-
surement uncertainties [4]. Although an analytical form of noise dis-
tribution is unknown, noise distribution model plays a critical part of
image denoising, aimed at computationally reversing the effects of
the degradation caused by random noise [5–16].

We provide a comprehensive study of the discrepancy between
the model of noise commonly used in image denoising algorithms
and the distribution of real sensor noise acquired by real sensor hard-
ware. There are major differences between our noise model valida-
tion study and the many existing empirical studies [17–23]. First, ex-
isting studies overwhelmingly focused on the relationship between
the pixel intensity and noise variance, but there has been little em-
phasis on the tail behavior of the noise distribution that greatly in-
fluences denoising performance. Second, most modern image de-
noising techniques incorporate linear transformations that give rise
to sparse signal representation and nonlinear transforms that decou-
ple noise and signal. As such, we developed an analytical technique
aimed at scrutinizing the noise models in the transform domains,
rather than focusing exclusively on the pixel noise distribution model
as the previous investigations have done. Our investigation provides
an insight to improving the image denoising algorithms.

2. EXPERIMENTAL SETUP

2.1. Data Acquisition

We obtained samples of noisy sensor data by capturing X-Rite Col-
orChecker (Figure 1(a)) at 3.4 lux using Nikon D90, Canon 550D,
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(a) X-Rite ColorChecker (b) Signal vs noise variance

Fig. 1. (a) ANOVA over regions A-E ensure uniformity of each Col-
orchecker patch. (b) Noise variance scales linearly with signal. Red
dot shows electronic noise (see text).

and Fuji Pro 1 in raw sensor format with 1/200 second exposure
(1/250 for Fuji), ISO 1600, and f/4.0. Color filter array sampled
data is partitioned into red, blue, and green measurements, which
are treated separately (i.e. 3×24=72 ColorChecker patches). Under
an ideal scenario, measured pixel component values from the same
ColorChecker patch are drawn from the same probability distribu-
tions.

Despite our best efforts, however, uneven lighting, vignetting,
and camera angle introduce additional variabilities. For this reason,
we detect non-uniformity of ColorChecker patches by the analysis of
variance (ANOVA) over five 10×10 regions (labeled A-E in Figure
1(a)) cropped from each ColorChecker patch. Any ColorChecker
patch that rejects the null hypothesis (i.e. means of A-E are equal) at
the 99% confidence level is removed from the experiment. We also
removed green pixels from blue-green rows because color crosstalk
contaminations affect green pixels in red-green and the blue-green
rows differently [24]. Each accepted ColorChecker patch has over
25,000 samples.

We also acquired another image (with the same camera settings)
with a cap placed over the lens. By blocking the incoming light,
this “blank” image offers an indication for the circuit noise that is
independent of the signal strength.

2.2. Heteroscedastic Pixel Noise Model

Empirical mean and variance for each ColorChecker patch are shown
in Figure 1(b). Assuming that fixed pattern and banding noises are
insignificant, this figure presents a convincing evidence that noise
variance scales linearly with signal strength. The linearity is usu-
ally attributed to the Poisson process of the photon emission in the
literature [9–19, 25]. Under this scenario, a sensor observation h is
modeled as hP , an affine transformed Poisson count data gP :

hP := α · gP + β, gP ∼ P(fP ), (1)
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(a) Pixel (b) DWT (zero mean) (c) DWT (nonzero mean) (d) DCT

Fig. 2. QQ plot comparing the distribution of the sensor measurements to the noise models of (1-3).

where fP is the latent intensity, and the subscript P denotes Poisson-
based model. The parameters α and β are learned from regressing
signal strength and variance in Figure 1(b).

Another way to capture the signal dependence of noise is to cou-
ple the variance of a normal random variable [23]:

hG ∼ N (αfG + β,α2fG). (2)

where the subscriptG denotes signal-dependent Gaussian noise model
((2) is the normal approximation of hP ).

Poisson-Gaussian hybrid model treats signal-dependent and signal-
independent noises separately [5, 6, 21, 26]. The observation hH =
αgS + gC is a combination of signal gS and circuit gC noise:

gS ∼ P(fS), gC ∼ N (µC ,σ
2
C), (3)

where (µC ,σ
2
C) is the signal-variance pair of lens cap image (red

dot in Figure 1(b)). Subscript H denotes hybrid model.

3. NOISE UNDER LINEAR TRANSFORMATION

3.1. Pixel Noise

The noise models above are heuristic approximations at best, and
model discrepancies deteriorate the image denoising performance.
We employ quantile analysis to robustly compare the distribution of

sensor data and the noise model. Consider a parametric curve of the
form [27]:

x(t) = F−1
data(t), y(t) = F−1

model(t) (4)

where Fdata,Fmodel : R → [0, 1] are the cumulative distribution
functions of data and model distribution, respectively. This so-called
quantile-quantile plot (QQ plot) lies on the 45◦ line if the empirical
data and noise model distributions are well-matched. If the data vari-
ables are found to be an affine transformation of the model variables,
then the QQ plot forms an affine line as well (but not necessarily on
45◦ line with zero intercept). QQ plot is useful for detecting the
deviations of the model from data, particularly in the tails of distri-
butions where the samples are sparse.

The QQ plots shown in Figure 2(a) compare the distribution of
the measured pixel data within a ColorChecker patch against the
models in (1-3). For Fdata(h), the empirical histogram of the pixels
measured within each ColorChecker patch was used. ForFmodel(h),
we derived the model parameters for each ColorChecker patch by:

fP = fG =
µH − β
α

, fS =
µH − µC

α
, (5)

where µH is the sample mean of each ColorChecker patch, and α, β
and µC are as described in Section 2.2.
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Each QQ plot describes the variation of real and model noise
within one ColorChecker patch only.1 As evidenced by the 45o line
formed by a portion of the QQ plot, the noise model is accurate near
the median. However, sensor measurements are clearly more heavy
tailed than the model (Nikon D90’s short negative tail is likely due
to saturation).

3.2. Discrete Wavelet Transform

Though we are interested in the impact of linear transforms on the
noise, quantile analysis in the transform domain is challenging. With
the precise form of real noise distribution unknown, an analytical
form of noise distribution in discrete wavelet (DWT) and cosine
(DCT) transform domains cannot be derived. Yet, unlike the pixel
domains, it is difficult to obtain a large number of real noisy DWT/DCT
coefficients drawn from the same distribution. We rejected the idea
to take the raw sensor data from a video sequence of a scene—
although applying DWT/DCT to each frame yields a large number
of noisy coefficients, noise is unnaturally coupled with the temporal
hysteresis of reset noise.

We developed a new strategy to obtain a large number of noisy
coefficients from the ColorChecker image. Consider Haar wavelet
transform (HWT)—finest level noisy wavelet (w(n)) and scaling
(s(n)) coefficients at location n are

w(n) =h(2n)− h(2n+ 1)

s(n) =h(2n) + h(2n+ 1)
(6)

where h(2n) and h(2n+1) are neighboring pixels. Thanks to spar-
sity, the majority of DWT coefficients have zero mean:

Ew(n) = 0 ⇔ Eh(2n) = Eh(2n+ 1). (7)

Hence h(2n) and h(2n + 1) are assumed to be drawn from the
same distribution. We obtain a large number of w(n) samples cor-
responding to a mean zero DWT coefficient by taking a difference
between two observed samples drawn at random from the same Col-
orChecker patch. By contrast, coefficients with nontrivial mean have
the property:

Ew(n) 6= 0 ⇔ Eh(2n) 6= Eh(2n+ 1). (8)

Hence h(2n) and h(2n + 1) are drawn from a different distribu-
tions. We may obtain a large number of w(n) samples by taking a
difference between two noisy samples drawn at random from two
predesignated ColorChecker patches.

For analysis, Fdata(w) was computed from the noisy DWT co-
efficients obtained by the above scheme. For Fmodel(w), the DWT
noise model derived from (1-3) have the form:

α−1wP ∼Skellam(fP , f
′
P )

wG ∼N (α(fG − f ′G),α2(fG + f ′G)) (9)

wH =αwS + wC ,

{
wS ∼ Skellam(fS , f

′
S)

wC ∼ N (0, 2σ2
C).

where {fP , fG, fS} and {f ′P , f ′G, f ′S} are parameters derived from
ColorChecker patches corresponding to h(2n) and h(2n + 1), re-
spectively.2 The QQ plots shown in Figure 2(b-c) compare the distri-
bution of empirical DWT coefficients against their models. Though
noise models are accurate near the median, the models clearly shorten
the tails.

1We cannot infer signal-noise dependence from the QQ plots as noise
samples in each plot are drawn from the same distribution with same
mean/variance. Only representative examples shown due to page limit.

2Skellam(fP , fP ) is known as Irwin distribution.

3.3. Discrete Cosine Transform

DCT is defined for k ∈ {0, 1, ...N − 1} as follows [28]:

d(k) =

N−1∑
n=0

h(n)√
N

cos
( π

2N
(2n− 1)k

)
. (10)

2D DCT applies (10) to horizontal and vertical directions. For quan-
tile analysis in DCT domain, randomly drawn sensor measurement
samples from each of N predesignated ColorChecker patches (N2

patches for 2D DCT) are respectively assigned to {h(0), . . . ,h(N−
1)} to yield a single DCT coefficient d(k) via (10). Repeating this
experiment yields a large number of DCT coefficients drawn from
the same distribution and Fdata(d). For Fmodel(d), randomly drawn
samples of hP in (1) from the models of N predesignated Col-
orChecker patches are assigned to {h(0), . . . ,h(N − 1)} to com-
pute DCT coefficient dP (k). We followed the same procedure to
yield dG(k) and dH(k) from (2-3).

The resultant QQ plot in Figure 2(d) suggests that the distri-
bution of DCT coefficients stemming from the real sensor data is
well approximated by the models. The improved match is likely
due to central limit theorem, which is in force as a result of DCT in
(10) taking weighted average of measurements {h(0), . . . ,h(N −
1)}. When N is small, the deviation of tails is still observable (not
shown).

4. NOISE UNDER VARIANCE STABILIZATION

Variance stabilization (VS) is an invertible function that recovers ho-
moscedasticity given heteroscedastic noise. VS is often combined
with additive white Gaussian noise (AWGN) image denoising to ad-
dress camera sensor noise. Bartlett/Anscombe VS transforms Pois-
son counts into a normal variable [29, 30]:

η{hP } =2
√

(hP − β)/α+ k ∼ N (2
√
fP + k, 1), (11)

where the constant value is k = 1/2 for Bartlett and k = 3/8 for
Anscombe. Poisson-Gaussian hybrid hH in (3) is also stabilized by
the generalized Anscombe transform [5, 6]:

η′{hH} = 2
√

(hH − µC)/α+ 3/8 + σ2
C/α

2. (12)

However, one can prove η{h} ≡ η′{h} by the fact that σ2
C =

αµC − αβ must hold in Figure 1(b). Haar-Fisz (HF) transform is a
more contemporary VS treatment that modify Haar wavelet (w) and
scaling (s) coefficients [31]:

γ{hP } =
wP√

α(sP − 2β)
∼ N

(
fP − f ′P√
fP + f ′P

, 1

)
. (13)

This procedure is repeated for coarser level wavelet representations.
Figure 3 compares the normal distribution models of (11-13)

against the distributions of variance stabilized sensor measurements
η{h} and γ{h} (and their DWT/DCT). Although Anscombe trans-
form stabilized noise variance, the tails of empirical VS coefficients
η{h} are clearly longer than normality. The tails of the empiri-
cal variance stabilized DWT coefficients also deviate from normal
probability. By contrast, HF stabilized coefficients γ{h} appear
to be normally distributed, as evidenced by straight QQ plot line.
However, the gentle slope of QQ plot suggests that data variance is
smaller than 1. By comparison, QQ plot followed the 45o line very
closely when scene was well lit (not shown). We conclude that HF
VS succeeds in “Gaussianizing” the observed data, but it did not
achieve homoscedasticity (i.e. variance depends on signal intensity).
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(a) Variance Stabilization (b) VS+Wavelet(zero mean) (c) VS+Wavelet(nonzero mean) (d) VS+DCT

Fig. 3. QQ plot comparing the distribution of variance stabilized Canon 550D measurements to the noise models of (11-13).

5. DISCUSSIONS

Poisson, signal-dependent Gaussian, and Poisson-Gaussian distri-
butions are commonly used to model the linear coupling between
the signal strength and the noise variance in image sensors. These
models provide the basis for image denoising methods that extend
the imaging device’s capabilities. Our quantile analysis definitively
proved that the tails of the noise models are too short to describe
the actual distribution of the measurement noise. The trends we de-
scribed in this paper are common among a variety of camera manu-
facturers, red/green/blue color components, and camera settings.

Our study is not without limitations. In Sections 3.2 and 3.3,
random sampling of the pixels within Colorchecker patch were lin-
early combined to yield a large number of empirical DWT and DCT
coefficients. This procedure is only valid if the random phenomena
occurring in the spatially neighboring pixels are independent. Ther-
mal noise, for example, is not always spatially white since electron
leakage affects neighboring pixels. Hence the computed DWT/DCT
coefficient noise in our study is noiser than the actual coefficients
computed from an image sensor with significant leak. However, the
main conclusions of this work—that the tail behavior of sensor noise
is heavier than the models—remains valid. Our lab’s capabilities to-
day do not allow for measurements with integrating spheres, which
guarantees uniformity of the scene beyond our current ANOVA test-
ing. Most commercial cameras have safety features that prevent pic-
tures from being taken while the camera optics are removed, increas-
ing the risks of vignetting.

What practical impact does the model mismatch play in image
denoising? How should image denoising methods be improved for
handling real image sensor data? Most modern image denoising
methods operate in (linear) transform domain. However, we showed
that the noise models also fail in Haar wavelet domain, where the
model tails insufficiently account for large noise coefficients. The
practical impact of the model mismatch is the undersmoothing of
noise—when denoising algorithms designed with (1-3) in mind are
applied to real sensor measurements, a large DWT coefficient is in-

correctly attributed to the signal since noise model does not account
for it. Though improved image denoising techniques would certainly
improve real sensor image denoising, the future image denoising de-
signs would likely benefit also from incorporating a heavier tail like-
lihood functions—such as scale mixture of likelihood functions.

An alternatives is to combine VS transforms with AWGN image
denoising. We concluded earlier that while Anscombe VS achieves
homoscedasticity (i.e. noise variance decoupled from signal strength),
the overall distribution profile is far from normality. In working
with Anscombe VS, one would need to extend the noise model tails
(e.g. scale mixture of AWGN) in order to improve denoising perfor-
mance. On the other hand, Haar-Fisz VS successfully transformed
sensor data into normal random variables, but the claim of the ho-
moscedasticity could not be substantiated. Indeed, one is at risk of
oversmoothing noise with conventional AWGN denoising method
used in conjunction with Haar-Fisz VS, since noise variance in low
light regions is lower than 1. One must first determine the true rela-
tionship between signal strength and noise variance in the Haar-Fisz
transformed domain.

We also witnessed that model mismatch is less significant in
DCT domain. Although it suggests that DCT-based denoising can
be effective for real image sensor data, there are a few practical chal-
lenges. First, the analysis of noise heteroscedasticity in the DCT do-
main is far more complicated than that of wavelet noise. The combi-
nation of Anscombe VS and DCT (as was investigated in [5, 6], for
example) is the only scheme in our investigation that satisfactorily
yielded a homoscedastic model matching the observation distribu-
tion. Moreover, the averaging in DCT that belies the central limit
theorem also results in a signal representation that is less sparse than
DWT, which is disadvantageous for image denoising (though energy
compaction is still in force).
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