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ABSTRACT
In this paper, we propose an accurate approximation frame-
work for separable edge-preserving filtering. Naı̈ve imple-
mentation of edge-preserving filtering, such as bilateral filter-
ing and non-local means filtering, consumes enormous com-
putational costs. Separable implementation of such filters is
an efficient approximation method for real-time filtering. The
accuracy of the conventional separable representation, how-
ever, is inadequate when the kernel size is immense. To im-
prove the accuracy, we prepare dual kernels that have differ-
ent kernel weights for horizontal and vertical filtering of sep-
arable filtering. In the experiment, we validate the proposed
implementation by using three kinds of filters; bilateral fil-
tering, dual bilateral filtering, and non-local means filtering.
Experimental results show that the proposed implementation
has higher accuracy while the computational time is almost
the same. Moreover, the proposed implementation is practi-
cal for denoising and disparity map refinement applications.

Index Terms— Edge-preserving filter, Separable filter,
Bilateral filter, Real-time processing, Computational photog-
raphy

1. INTRODUCTION

Edge-preserving filters are important tools for image process-
ing, computer vision researchers. The representative filter-
ing is the bilateral filter [1]. The edge-preserving filters are
used for various applications, including image denoising [2],
high dynamic range imaging [3], detail enhancement [4, 5],
flash/no-flash photography [6, 7], up-sampling/super resolu-
tion [8], alpha matting [9, 10], haze removing [11], and op-
tical flow or stereo correspondence problem [12, 13, 14, 15],
its refinement processing [16, 17], coding noise removing [18,
19], and free viewpoint image rendering [20].

For real-time applications, efficient implementation or ap-
proximation is essential. Accordingly, tremendous number of
acceleration methods are proposed [9, 21, 22, 23, 24, 25, 26,
27, 28]. Contrary to what we might think, the seminal accel-
eration approach of the separable implementation [29, 30] is
the fastest approach yet within the practical kernel size.

The approximation approach of the separable implemen-
tation forcedly decomposes a filtering kernel into horizontal
and vertical strips. The computational order of a naı̈vely im-
plemented filter is O(r2), where r is a kernel radius of the

filter. In constant, that of a separably implemented filter is
O(r). Even if the state-of-the-art filters have O(1) order, i.e.
the filters are independent of these kernel radius, the sepa-
rable implementation defeats them as the aspect of the com-
putational cost up to the middle kernel radius. Moreover, the
straightforward implementation is suitable to build in circuits;
therefore, the separable filtering is adequate for real-time ap-
plications. The issue of this approximation is its accuracy. It
is not sufficient, and streaking noises are outstanding.

To improve the accuracy, we proposed novel implementa-
tion for the separable edge-preserving filtering. The proposed
implementation prepares a new kernel for filtering at the sep-
arable second-pass. Moreover, we extend the separable im-
plementation to applying various edge-preserving filters. We
named the framework switching dual kernels based separable
filtering (SDK-SF). The implemented codes and additional re-
sults are avalable from our website1.

2. RELATED WORK

General edge-preserving filtering of finite impulse response
(FIR) filtering is represented as:

Īp =
1

Kp

∑
q∈Ω

wp,qIq, (1)

where p, q are center and reference pixel positions, Iq is a
pixel value of an input image at q, Īp is one of an filtered
image at p, Ω is a set in a kernel, wp,q is a weight between p
and q, and Kp =

∑
q∈Ω wp,q is a normalized factor.

The weight of the edge-preserving filtering is defined by
various types of filtering. It has domain and range kernel
parts. The weight of the bilateral filtering [1] is denoted as:

wbi
p,q = exp(

−(‖p− q‖22
2σ2

s

) exp(
−‖Ip − Iq‖22

2σ2
r

), (2)

where ‖ · ‖2 is L2 norm, σs and σc are standard deviations for
domain and range kernels. The weight of the dual bilateral
filtering [31, 18, 12, 32] (also called trilateral / multilateral
filtering) is defined as:

wdual
p,q = wbi

p,q exp(
−‖Jp − Jq‖22

2σ2
ar

), (3)

1http://fukushima.web.nitech.ac.jp/research/separable.html
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Fig. 1: Processing flow of switching dual kernels based sepa-
rable filtering (SDK-SF).

where J is an additional joint image and σar is a standard
deviation for an extra range kernel. Thus, the filter has dual
range kernels. The weight of the non-local means filtering [2]
is defined as:

wnlm
p,q = exp(

−‖v(Np)− v(Nq)‖22
h2

), (4)

where h is a parameter for smoothing strength, and v(Np) =
{Ip1

, Ip2
, · · · , IpN

} is a vectorizing function of neighbor-
hood pixels. The function converts a set Np, which is N
neighborhood pixels around p, to a N × 1 vector v.

Separable filtering is one of the efficient technique. Arbi-
trary kernel can be represented as a summation of separable
kernels by using singular value decomposition (SVD) [33].
The SVD based method is effective for a spatially invariant
kernel. In the case of spatially variant kernel, the conven-
tional approaches decompose kernels directly for separable
bilateral filtering [29] and separable non-local means filter-
ing [30] . With the implementation, an input image is filtered
only by the horizontal direction at the first pass, and then, the
horizontally filtered image is filtered by the vertical direction
at the second pass. The first filtering is denoted as:

ĪHp =
1

KH
p

∑
q∈ΩH

wH
p,qIq, (5)

where ΩH is a subset along horizontal direction of a full ker-
nel. wH

p,q and ĪHp are a weight and an output of the horizon-
tal filtering, respectively, and KH

p is the normalization factor.
The second filtering is represented as:

Īspp =
1

KV
p

∑
q∈ΩV

wV
p,qĪ

H
q . (6)

Here, ΩV is a subset along vertical direction of a full ker-
nel, wV

p,q is a weight of the vertical filtering, and KV
p is the

normalization factor. Īspp is an output of the conventional sep-
arable filtering.

The weight of the separable filtering has the relation to
the pixel position, the input image, and the parameters; thus,
the weights of each direction become the following weighting
functions:

wH
p,q = weight(p, q, I,β,γ), (7)

Table 1: Difference of the second-pass filtering between the
conventional implementation and the proposed one.

Conventional Proposed

Guidance Filtered image Input image

Filtering type Direct filtering Joint filtering

Sigma of range No change Compressed

wV
p,q = weight(p, q, ĪH ,β,γ), (8)

where β is parameter(s) for a domain kernel (e.g., σs for the
bilateral filter), and γ is parameter(s) for a range kernel (e.g.,
σr for the bilateral filter). Note that the first-pass weight of
wH is calculated by using the input image I and the second-
pass weight of wV is calculated by using the horizontally fil-
tered image ĪH . The second-pass weight is computed from
the filtering image itself; thus, we can use the same function
of the first-pass for the second-pass.

3. SWITCHING DUAL KERNELS FOR
SEPARABLE FILTER

We propose novel implementation of separable edge-preserving
filtering. The conventional implementation [29, 30] utilizes
the same kernel function for separable filtering. The draw-
back of this separable implementation is that vertical filtering
(or second pass filtering) results in over-smoothing.

The proposed implementation has an additional kernel for
controlling the smoothness at the second-pass filtering and al-
ternates the kernel of the second pass filtering to it. The pro-
posed framework of switching dual kernels based separable
filtering (SDK-SF) is depicted in Fig. 1. For the second-pass
filtering, we re-define the following equation instead of using
Eq. (8):

wV
p,q = weight(p, q, I,αβ,γ), (9)

where α, (0 < αii ≤ 1) represents a compression ratio of
β, and is a diagonal matrix, which size is Γ × Γ, where Γ is
the dimension of the vector γ. The main differences between
Eq. (8) and (9) are listed in Table 1. We replace the filtered
image Ī to the input image I for the range kernel compu-
tation. At the conventional second pass, the filtering image
is the horizontally filtered image ĪH ; thus, we should exploit
joint filtering [6]. Moreover, we shorten the width of the range
kernel or suppress the weight by using the scaling parameter
α. As a result, we can protect images from over-smoothing at
the second pass filtering stage.

The detailed representation of the bilateral filter is as fol-
lows. The conventional vertical weight is:

wC:V :bi
p,q = exp(

−(‖p− q‖22
2σ2

s

) exp(
−‖ĪHp − ĪHq ‖22

2σ2
r

). (10)

Moreover, the proposed implementation is alternated by:

wP :V :bi
p,q = exp(

−(‖p− q‖22
2σ2

s

) exp(
−‖Ip − Iq‖22

2α2σ2
r

). (11)
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Fig. 2: The bilateral filtering results (“flower”): from left to right, input image, naı̈ve, conventional separable implementation,
and proposed separable implementation. The filtering parameters are σc = 65, σs = 16.33, r = 49, and α = 0.8 for the
proposed. The computational time is 450 ms (naı̈ve), 16 ms (conventional) and 17 ms (proposed).

0

200

400

600

800

1000

8 16 24 32 40 48 56 64P
ro

ce
ss

in
g

 t
im

e 
[m

s]

Spatial standard deviation

Naïve
Separable

Guided

Fig. 3: Computational time versus spatial standard deviation.
The kernel radius is set to 3σ. Separable is SDK-SF. Inputs
are 1 megapixel (1024× 1024) color images.

The representation of the dual bilateral filter and that of the
non-local means filter are almost the same and easily derived;
thus, we omit these equations from this paper.

4. EXPERIMENTAL RESULTS

In this section, we verify the proposed separable filtering of
SDK-SF for the bilateral filter, the non-local means filter, and
the dual bilateral filter. We compare the SDK-SF with the
conventional separable filters [29, 30]. The results of the bi-
lateral filter are shown in Figs. 2, 3, 4, and these of the non-
local means filter are revealed in Figs. 5, 7. The results of
the dual bilateral filter is indicated in Fig. 6. Fig. 8 shows
computational time for various edge-preserving filters.

Figure 2 shows the bilateral filtering results. The result
of the SDK-SF is visually similar to one of the naı̈ve imple-
mentation while the conventional implementation has over-
smoothing effects along the vertical direction.

Figure 3 shows the computational time of the naı̈ve im-
plementation, the SDK-SF of bilateral filtering and guided
filtering [9] that is the representative of constant time filter-
ing. The computational time of the naı̈ve and the SDK-SF is
monotonically increasing though the increase of the separa-
ble implementation is moderate. The SDK-SF is faster than
the guided filter, which is known as the most efficient edge-
preserving filter. The cross point between the SDK-SF and
the guided filter is at the large kernel width (over 192 pixels
with the 1024 image). Note that we omit the conventional
implementation because the computational time is almost the
same as the proposed one (See Fig. 8).

Figure 4 shows the accuracy of the filtering. We compare
the naı̈ve with the SDK-SF of bilateral filtering by using peak
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Fig. 4: PSNR versus standard deviation of range kernel (left)
and spatial kernel (right). In the left case, σs is fixed (16.33),
and the kernel radius is 49 (3σ). In the right case, σr is fixed
(60.0). “Conv.” is the conventional implementation, and α is
the parameter for the range kernel. The plots are averages of
24 images in Kodak True Color Image Dataset.

signal noise ratio (PSNR) in the Y channel. When we exploit
joint filtering for the second pass (α = 1), the accuracy is
largely improved. Moreover, the accuracy is also improved
additionally by adjusting the parameter α (0.8 is the best or
the second best for α in the experiments of Fig.4.). Results of
the other filters are omitted due to the room of the space. The
tendencies are almost the same as the bilateral filter.

Figure 5 shows results of denoising by using the non-
local means filter. The SDK-SF implementation has the sec-
ond highest performance, and the computational cost is al-
most the same as the conventional separable implementation.
The SDK-SF is similar to the naı̈ve implementation, while the
convention has vertical streaking noises. Figure 7 shows the
denoising results with various noise levels (σ = 10, 20, 30).
The SDK-SF has the second best performance.

Figure 6 shows results of disparity map refining from a
coded disparity map. In this experiment, the disparity map
and the associated RGB image are coded by JPEG with the
quality factor of 50, and then the coded disparity map is fil-
tered by the dual bilateral filter. The range kernel is intro-
duced by the disparity map and the RGB image. The result
shows that the SDK-SF is the second best for the disparity
map refinement. The filter is useful for real-time depth image
based rendering [20] with disparity map coding [18].

The computational time of each edge-preserving filtering
is shown in Fig 8. We use C++ and optimize it by using SSE
vectorization and multi-core-parallelization with Intel thread-
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Fig. 5: The non-local means filtering results of the image (“tiffany”): from left to right, noisy image (σ = 30, 512×512), naı̈ve,
conventional separable implementation, and SDK-SF. PSNRs are 19.52, 27.59, 27.82, 28.13 respectively. The computational
time of naı̈ve, the conventional and SDK-SF are 33.2 ms, 7ms, 7.2ms, respectively.

Fig. 6: The dual bilateral filtering results of the disparity map (“art”): from left to right, coded disparity map (JPEG quality
factor = 50), naı̈ve, conventional separable implementation, and SDK-SF. The values of ratio of bad pixels [34], are 11.68, 2.25,
2.62, 2.39 respectively. Here, the error threshold set to 1.0.
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Fig. 7: Denoising results of non-local means filtering with
respect to various noise levels (σ = 10, 20, 30).

ing building blocks (TBB). CPU is Intel Xeon X5690 3.47
GHz (dual-CPUs), OS is Windows 7 64 bit, and the compiler
is Visual Studio 2012.

5. CONCLUSION

In this paper, we proposed new separable implementation for
edge-preserving filtering to improve the filtering accuracy.
We called the implementation switching dual kernels based
separable filtering (SDK-SF). Using joint filtering and adjust-
ing range weights for the second pass filtering, we can sup-
press over-smoothing effects and streaking noises in the sep-
arable edge-preserving filtering. To verify the effectiveness
of the SDK-SF, we confirm three types of edge-preserving

34.9

71.2 82.3

35.8

72.5 83.3

203.08

680.2

1651.6

1

10

100

1000

10000

Bilateral Dual NL means

T
im

e 
[m

s]

Conv.

SDK-SF

Naïve

Fig. 8: Computational time of each edge-preserving filter.
Image resolution is 1024× 1024 color image. The kernel ra-
dius is 24×24. The guidance image is color for dual bilateral
filtering. Patch size for non-local means filtering is 5× 5.

filtering, such as bilateral filtering, dual bilateral filtering, and
non-local means filtering. Experimental results showed that
the separable implementation accelerates the edge-preserving
filters, and SDK-SF has higher accuracy than the conven-
tional method while the computational time is almost the
same as the conventional separable filtering implementation.

Limitation of the separable filtering is that the filter does
not suit to complex-textured regions. The filter only travels
through horizontal and vertical directions; thus, the smooth-
ing effect cannot be propagated over-striding multiple edges.
The limitation is same as the conventional separable imple-
mentation.
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