
A ROBUST MOTION DETECTION ALGORITHM ON NOISY VIDEOS 

Yu Liu, Huaxin Xiao, Wei Wang, Maojun Zhang 

 

National University of Defense Technology 
 

ABSTRACT 

The applicability and performance of motion detection 

methods dramatically degrade with the increasing noise. In 

this paper, we propose a robust dictionary-based background 

subtraction approach, which formulates background 

modeling as a linear and sparse combination of atoms in a 

pre-learned dictionary. Motion detection is then 

implemented to compare the difference between sparse 

representations of the current frame and the background 

model. The projection of noise over the dictionary being 

irregular and random guarantees the adaptability of our 

approach. Experimental results on synthetic and real noisy 

videos demonstrate the robustness of the proposed approach 

compared to other methods. 

 

Index Terms—motion detection, dictionary learning, 

noise, sparse representation. 

 

1. INTRODUCTION 

Motion detection is defined as the problem of segmenting 

moving objects from a given image sequence or surveillance 

video. It has drawn considerable attention in the field of 

computer vision and video processing over the past decades. 

The most prevalent approach is background subtraction, 

which establishes a background model through a certain 

method and then calculates the difference between the 

current frame and the background to segment the foreground 

area. The statistical background model has been adequately 

researched and developed in past years. In [1]-[5], the 

mixture of Gaussian (MoG) model was established gradually 

and has been demonstrated to be a simple and effective 

approach. Oliver et al. [6] considered spatial configurations 

that captured eigen-backgrounds by eigenvalue 

decomposition based on the whole image, in contrast to 

methods using a statistical background model. Cevher et al. 

[7] assumed that most pixels in a frame belong to the 

background and introduced the theory of compressive 

sensing to achieve detection. Later, similar to the work 

presented by [6], incremental principal component analysis 

(PCA) [8] was used to capture the motion characteristics of 

backgrounds. A Self-Organizing approach to Background 

Subtraction (SOBS) [9] was proposed through artificial 

neural networks and achieved robust detection for different 

types of videos taken with stationary cameras. Lately, a 

visual background extractor (ViBe) [10] based on 

classification model can apply only one frame to update the 

background model and is one of the mainstream approach. 

The aforementioned methods are focused more on 

handling complex and dynamic scenes, such as rain, snow, 

waves, and shaking trees, without considering the quality of 

images. Surprisingly, within this well-understood area, an 

elementary problem regarding corrupted signals is 

commonly observed in practice but has not been explored in 

depth. In real applications, image signals can easily get 

polluted in many cases: such as low light surveillance, heat 

in the sensor or turbulence in the signal transmission, where 

high level of noise causes existing algorithms to perform 

inappropriately. One approach to solve this problem is to 

employ denoising methods before applying detection. 

However, even state-of-the-art denoising algorithms cannot 

guarantee that the image quality is adequate for detection 

because most detection algorithms assume purely unpolluted 

images. 

In order to deal with this problem, we propose a motion 

detection algorithm based on the theory of sparse 

representation that is stable on noisy videos. The proposed 

method employs a dictionary learning algorithm to obtain 

bases and formulates a background modeling step as a 

sparse representation problem. It establishes the dictionary 

from spatio-temporal image patches and then projects the 

current frame on this trained dictionary to obtain a 

corresponding coefficient for its representation. Different 

scene contents ought to have different coefficients. That is, 

the foreground would not lie on the same subspace spanned 

by the background, helping us to identify changes in the 

scene by comparing spanned coefficients. Given that 

statistical noise is typically distributed through the entire 

space anisotropically, its influence on real signal will be 

weakened obviously after the process of sparse 

representation. This character enhances the robustness of the 

proposed method to corrupted signals, while retaining its 

capability of dealing with non-noisy images and dynamic 

scenes. 

2. PROPOSED METHOD 

As described in Section 1, the proposed method can be 

divided into three parts: background modeling, dictionary 

learning for arbitrary scenes, and two-stage foreground 

detection based on sparse coefficients. The flow chart of our 

method is illustrated in Fig. 1. 
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Fig. 1: The flow chart of the proposed method. 

2.1. Background model 

The background subtraction problem is usually formulated 

as the linear combination of a background model
BI and a 

foreground candidate
FI : 

 B FI I I                          (1) 

This study uses a pre-learned dictionary D to sparsely 

represent the background model, and the dictionary D is 

more general for arbitrary scenes. The background model is 

shown as follows: 

BI D A                                 (2) 

where A is the matrix of the sparse coefficients. The atoms d  

in dictionary D represent the bases of image signals. Via 

sparse coding, the background model can be regarded as a 

sparse and linear combination of the atoms. 

 

2.2. Dictionary for arbitrary scenes 

Compared to traditional methods of obtaining bases, such as 

wavelet and PCA, dictionary learning does not emphasize 

the orthogonality of bases, making its representation of the 

signal have better adaptability and flexibility. Dictionaries 

are effective for signal reconstruction and classification in 

the audio and image processing domain [11]. For a training 

set  
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
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i i
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where k  is the number of atoms in D ,
i  are the sparse 

coefficients and   is the regularization parameter.  

In our approach, Online Dictionary Learning [11] is 

employed to cope with Equation (3). This algorithm exploits 

stochastic online dictionary learning adapted to sparse 

coding tasks which we use in the foreground detection step. 

Compared to the K-SVD [12], Online Dictionary Learning 

[11] runs faster and demands less memory. This study 

extracts arbitrary images from different scenes as the 

training set.  

The size of the dictionary can be considered as a 

tradeoff issue. A larger scale of the dictionary can capture 

more detailed structures with longer time consumption in the 

process of dictionary learning and sparse coding. By contrast, 

a smaller dictionary performs worse in sparse representation 

but responds faster in detection. In this work, a relatively 

larger dictionary (256 atoms for the first stage and 81 atoms 

for the second stage) is used as the preferable option to 

achieve better detection performance. 

2.3. Two-stage foreground detection 

Following Equation (1), the foreground
FI is the difference 

between the current frame I and the background model
BI : 

F BI I I I D A                   (4) 

However, adopting the corrupted frame I  can still be 

directly affected by the noise. In this study, we project the 

current frame I over the learned dictionary and compute the 

sparse codes A with LARS algorithm [13]. Then, the 

formula is converted as follow: 

FI D A D A                    (5) 

We can then compare each patch to decide whether it 

belongs to the foreground through the distribution of the 

sparse codes: 
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where
i and

i are the sparse coefficient of the thi block in 

the background model and the current frame.
1 and

2 are 

the differences of sparse coefficient’s distributions and 

values between the background model and the current frame. 

Given that the distributions and values reflect which 

subspace is expanded by the test frame, we can use these 

parameters to decide whether or not the content of the 

monitoring scene has any movements. Specifically, if the 

image content remains the same, it tends to have identical 

distributions and corresponding values. By contrast, if a 

foreground object enters the scene and changes the content, 

it generates distinct distributions. 

To obtain a more precise result, we post-process the 

differences of the sparse coefficients as follows: 

1 1 2 2( ) ( ) ( )     i i i                            (7) 

and 
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where i  is the number of the image block. 
1  and 

2  are 

unitary parameters which determine the weights of 
1  and 

2  respectively. ( )neighbor i  means the neighborhood 

blocks of the thi  block. The Structural Similarity Testing 

(SST) is defined as follow: 
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where 
1B  and 

2B  are the image blocks of 
BI  and D A . 

  and   represent the average and variance of the image 

block. 
1C  and 

2C  are the parameters similar to the ones 

defined in [14]. SST  is a weight parameter that represents 
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the structure similarity between the sparse representation of 

the background model and the current frame. 

Equations (7), (8) and (9) can enhance the effect of the 

segmentation because the thi  block belonging to a 

foreground object not only incorporates its own intensity but 

also of its neighborhood. If the sparse representation of the 

current frame block has similar structure as the one in the 

background model, the value of 
iSST  would be very large. 

In this case ( )i  is low and the block would not be regarded 

as the foreground. Thus, the SST  further improves the 

precision of the detection results. 

 
(a)Noisy frames   (b)Ground truth      (c)1st stage       (d)2nd stage 

Fig. 2: (a): The three frames are extracted from Office dataset in 

[14] (Frame No. 611, 677 and 794) and are added the mixture 

noise of Gaussian and Poisson. (b): Ground truth. (c)-(d): First and 

second stage detection results with proposed method. 

The dictionary based on patches leads to unsatisfactory 

precision, as shown in the Fig. 2(c). To obtain a pixel level 

result, the proposed method includes two-stage foreground 

detection. The first stage roughly detects the foreground in 

the patch, and the second stage refines the detection results 

on top of the first stage. Assume that the size of the atom in 

the first stage dictionary is K K . Thus, the size of the 

foreground candidate block is K K . For each foreground 

block, we use a L L  sliding window to determine whether 

the central pixel belongs to the foreground. Pixel-wise 

refinement as shown in Fig. 2(d) achieves more precise 

detection results. 

Background updating. An important characteristic for any 

background subtraction algorithm is to continuously update 

the learned model over time. The update process is the 

ability to handle gradually changing illumination and adapt 

to new objects that appear in a scene. Since the dictionary in 

our work is learnt as preprocessing step by arbitrary images, 

the background update process is to update the sparse 

coefficients every frame or couple of frames according to 

the implementation requirements. 

Parameter selection. We use the regularization parameter 

1.2 K  in the experiments. The term 1 K  is a classical 

normalization factor and the constant 1.2 has been shown to 

yield reasonable sparseness (about 10 nonzero coefficients) 

in [11]. Since norm 
1l  can better represent the distribution of 

the sparse coefficient and make the difference more 

distinguishable, 
2  is then set to a relatively larger value 

(0.65) as the dominant weight, while 
1 is 0.35. These two 

parameters are tested in practice as constants which are 

irrelevant to the noise level. 
1C  and 

2C  are defined as 

2(0.02 )C  and 
2(0.01 )C  where C  is the dynamic range of 

the pixel values. In this paper, C  is 255 for 8-bit grayscale 

images. 

3. COMPARISONS AND EXPERIMENTAL RESULTS 

3.1. Details of Implementation 

To evaluate the performance of the proposed method, we 

tested the proposed method in two ways: one on a public 

dataset [15] with synthetic noise, and the other one on 

realistic videos captured under low light. The size of the two 

videos is 360 240 . The sizes of the dictionary in the two-

stage detection are 8 8  pixels with 256 atoms in the first 

stage and 3 3  pixels with 81 atoms in the second stage. 

We add various levels of a mixture of noise to the 

public dataset [15]. The model of the mixture noise is 

defined as follows: 

   nI P I n                             (10) 

where I and nI are the original and noise image.  and  are 

the scale factor of Poisson noise and density parameter of 

salt & pepper noise.  P is the distribution of Poisson. 

n obeys the distribution of the Gaussian noise  2,N   . 

Equation (8) demonstrates that the mixture noise consists of 

Gaussian White, Poisson and salt & pepper noise. 

3.2. Experimental results 

In this section, we qualitatively compare the proposed 

method with classic background subtraction algorithms 

improved MoG [4] and KDE [5] and state-of-the-art 

algorithm SOBS [9] and ViBe [10]. For all these algorithms, 

we experiment with different adjustments of parameters until 

results seem optimal on the tested dataset. 

First, we present qualitative comparisons over the 

public dataset [15] with synthetic noise. As shown in Fig. 3, 

this experiment extracts 4 frames (Frame No. 341, 419, 476, 

and 547) from dataset Pedestrians and adds three different 

levels of mixture noise (Noise level 1: 30  , 

25  , 0.01  ; Noise level 2: 50  , 50  , 0.02  ; 

Noise level 3: 70  , 100  , 0.03  ). Under non-

noise conditions (first column of Fig. 3), all these algorithms 

can achieve good detection result with little difference. 

When noise becomes high, the compared approaches are 

obviously infected by noise to different extent. The mixture 

noise at Level 1 affects KDE [5] the most and SOBS [11] 
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the least. At Level 3, the compared approaches lose efficacy 

almost completely. On the contrary, the proposed method 

performs robustly and copes well to different levels of noise. 

 

 
(a)Original frame (b)Noise level 1 (c)Noise level 2 (d)Noise level 3 

Fig. 3 Comparison of detection results on 4 frames (No. 341, 419, 

476 and 547) from the dataset Pedestrians [15]. 1st row: images 

with synthetic noise [15]; 2nd row: ground truth [15]; 3nd to 7th row: 

detection results of improved MoG [4], KDE [5], SOBS [9], ViBe 

[10] and our method. Each column has different level of noise, 

from left to right (noise level 0: 0  , 0  , 0  ; noise level 1: 

30  , 25  , 0.01  ; noise level 2: 50  , 50  , 

0.02  ;  noise level 1: 70  , 100  , 0.03  ) 

Aside from the synthetic noise experiment, we 

implement the proposed method on different realistic low 

light videos with large noise as shown in Fig. 4. Here we use 

a SONY IMX 104 CMOS sensor. Under the low light 

condition, contrast enhancement is commonly used to 

enlarge the low grayscale value. However, it would increase 

the noise level which makes the detection even more 

difficult. Active infrared device is another alternative way to 

alleviate this problem, but it has limited distance and still 

captures corrupted videos only with less serious noise. 

Regardless of above methods, the proposed method are 

robust to handle harsh illumination environments. 

 
(a)Dataset 1                (b) Dataset 2               (c) Dataset 3 

Fig. 4 Comparison of detection results on real low light videos. 1st 

row: test frames extracted from low light videos. The illumination 

of the videos is about 1.5-2.0 lx, 0.7-1.0 lx and 0.3-0.5 lx from 

Dataset 1 to Dataset 3. 2nd-6th row: ground truth and detection 

results from Improved MoG [4], KDE [5], SOBS [9], ViBe [10] 

and our method. 

4. CONCLUSIONS 

Existing motion detection methods ignore the quality of 

image signals and are sensitive to noise. We propose a 

robust motion detection algorithm based on dictionary 

learning to handle noisy videos. When noise is too large for 

the assumptions of classic algorithms to hold, the mixture of 

Gaussian and non-parametric models becomes inappropriate, 

whereas the proposed method can still achieve satisfactory 

detection performance uninfluenced by statistical noise of 

different types and scales. Experimental results on synthetic 

and real noisy videos demonstrate the promising robustness 

of the proposed approach in comparisons with other 

competing methods. The real-time implementation of the 

proposed method can be considered the future direction of 

this work.  
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