
A WORKLOAD BALANCED PARALLEL VIEW SYNTHESIS FOR FTV

Zhanqi Liu, Xin Jin, Chenyang Li and Qionghai Dai

Shenzhen Key Lab of Broadband Network and Multimedia,

Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

ABSTRACT

In this paper, a parallel system together with an adaptive

workload balancing algorithm is proposed for view synthesis

on multi-core platforms. Based on system level data parallel-

ism, an adaptive workload balancing method is proposed for

depth image based rendering by evaluating the number of

non-hole pixels after warping. Experimental results demon-

strated that with the proposed workload balancing algorithm,

the workload difference among the cores is reduced by

90.65% on average for 2-core systems and by 79.57% on

average for 4-core systems, respectively. Compared with the

parallel system without the proposed balancing algorithm,

synthesis speed is further improved by 7.5% for 2-core sys-

tems and 8.9% for 4-core systems at maximum, respectively,

without degradation in the subjective and objective quality.

Index Terms—Parallel view synthesis, depth image

based rendering, workload balancing, FTV

1. INTRODUCTION

As the future of 3DTV, free viewpoint TV (FTV) has at-

tracted great attention both from industry and academy. It

allows viewers to watch a 3D scene by freely changing the

viewpoints [1]. The Moving Picture Experts Group (MPEG)

started FTV standardization project in April 2007 and has

adopted a system architecture of performing depth estima-

tion at the sender and view synthesis at the receiver with the

data format Multiview Video plus Depth (MVD) [2].

The MVD based architecture is feasible for FTV imple-

mentation using limited input data, while it also introduces

big computational burden at the receiver, where the virtual

views need to be generated by depth image-based rendering

(DIBR) [3]. In order to obtain virtual views with good quali-

ty, DIBR introduces Warping, Blending, Hole Filling and

Boundary Noise Removing [3] to map the reference views to

the virtual viewpoint and to correct the pixel values accord-

ingly. However, the process presents high computational

complexity, which affects the application of FTV especially

on portable devices, such as smart phones, tablet PCs etc.

Recently, some works have been proposed for fast view

synthesis based on GPU [4][5]. However, for multi-core

systems, which are widely applied in portable devices, to the

best of our knowledge, no parallel view synthesis algorithm

has been proposed yet. Furthermore, for the parallel applica-

tions, workload balancing among the cores is essentially

important. The efficiency of parallelism is mainly con-

strained by the execution time of the core with the highest

workload [6]. Developing a parallel view synthesis system

with balanced workload is fundamentally required by the

portable devices for FTV immigration.

Consequently, a parallel view synthesis system with an

adaptive workload balancing algorithm is proposed in this

paper. The system supports system level data parallelism by

partitioning the reference views according to the require-

ments from the hardware and the users. The proposed work-

load balancing algorithm extracts the number of non-hole

pixels from the warped image to predict the partition accu-

rately. Experiments results demonstrated that the proposed

workload balancing algorithm introduces an average reduc-

tion of 90.65%/79.57% in workload balance difference,

which leads to the 1.89/3.47 times speedup ratio achieved by

the whole system on 2-core/4-core systems. Negligible deg-

radation in objective quality is observed in the synthesized

views, which is not detectable subjectively.

The rest of the paper is organized as follows. In Section

2, the proposed parallel view synthesis system is introduced.

In Section 3, the workload balancing algorithm is described

in detail. The experimental results are provided in Section 4

with conclusions in Section 5.

2. PARALLEL VIEW SYNTHESIS SYSTEM

The system architecture of the proposed parallel view syn-

thesis with workload balancing is depicted in Fig. 1. As

shown in the figure, the system mainly consists of Data Par-

titioning, View Synthesis, Adaptive Workload Balancing and

Data Integrating.

In Data Partitioning, system level data parallelism is ap-

plied to partition each frame of the reference views accord-

ing to the number of cores or the requirements from the

users. Each frame can be partitioned horizontally, vertically,

or partitioned into tiles like that defined in 3D-HEVC [2].

Texture and depth from the left and right reference views

take the same partition scheme. The size of the partitions is

determined by Adaptive Workload Balancing. Each partition

group, including texture and depth partitions from the left

and right reference views, is assigned to a core for view

synthesis.

1558978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015

In View Synthesis, both 1-D and 2-D view synthesis [8]

techniques based on DIBR can be applied, which is deter-

mined by the arrangement of cameras and the location of

virtual views. A partition of the virtual view will be generat-

ed after View Synthesis, which will be sent to Data Integrat-

ing for merging.

Data Integrating gathers the synthesized partition from

each core. It waits until all the cores finish view synthesis

and combines the synthesized partitions into a complete

virtual view for output. To be noted that if the computational

workload among cores is quite different, the efficiency of

parallel synthesis will be greatly reduced because of waiting.

Consequently, an Adaptive Workload Balancing is proposed

to balance the workload among the cores.

Adaptive Workload Balancing balances the workload

based on the non-hole pixels distribution in the warped im-

age. It predicts the future workload by retrieving the number

of non-hole pixels in each line from the warped image and

determines the partition size of the next frame based on the

predicted workload. The size of the partitions adapts to vid-

eo contents and the maximum disparity in the frame. The

proposed workload balancing algorithm will be described in

detail in Section 3.

Data

Partitioning

View

Synthesis

View

Synthesis

View

Synthesis

Adaptive

Workload

Balancing

Data

Integrating

. . .

. . .

Core 1

Core 2

Core n

Left

Texture

Left

Depth

Right

Texture

Right

Dpeth

Virtual

View

Fig. 1. The proposed parallel view synthesis system.

3. ADAPTIVE WORKLOAD BALANCING

Adaptive Workload Balancing determines the size of the

partitions by temporal prediction. Considering the most

general 3D applications uses horizontally arranged cameras

[1], and partitioning the frame horizontally introduces an

average of 0.4dB increment in PSNR for the synthesized

views relative to partitioning vertically and partitioning into

tiles because of exploiting more neighboring pixels, the

following derivations are proposed for horizontal partition-

ing based on 1-D view synthesis [8]. Nevertheless, all the

derivations can be extended to other partition types easily.

3.1. Definition of workload

Generally, the normalized workload of a task can be meas-

ured by the processor utilization, which is proportional to

the execution time of a task [7]. Boundary Noise Removing

is discarded for that it doesn’t provides a stable performance

in objective quality even resulting in a significantly worse in

some content. So, experiments have been carried out to re-

trieve the execution time for the other three major processes

in 1-D view synthesis: Forward Warping, Merging and Hole

Filling. It is observed that Forward Warping and Merging

occupy around 94% of the total execution time of view syn-

thesis. Thus, the workload of view synthesis for a partition i,

Wi, can be approximated by

 , ,i F i M iW W W , (1)

where WF,i and WM,i are workload of Forward Warping and

Merging, respectively.

Forward Warping warps the reference partition to the vir-

tual viewpoint pixel by pixel according to the 3D warping

formula [3]. So, its workload is proportional to the partition

size, which is given by

1,
2

F i i i
W w h , (2)

where α1 denotes the warping workload per pixel; wi and hi

denote the width and height of partition i, respectively. Mul-

tiplying by 2 represents warping from the left and right

views simultaneously.

Merging blends the two partitions warped from the left

and right reference partitions and generates the partition at

the targeting virtual viewpoint pixel by pixel. Since it pro-

cesses the pixel positions in the non-hole regions either

warped from the left view or the right view, the workload of

Merging, WM,i, is proportional to the total number of pixels

in the non-hole regions. So, it is given by

([] [])
, 2 , ,

1

h
i

W N j N j
M i l i r i

j

 , (3)

where α2 denotes the blending workload of a pixel in non-

hole regions; Nl,i[j] and Nr,i[j] denote the total number of

non-hole pixels in line j of the warped partition i from the

left and right views, respectively.

Since α1 and α2 are algorithm and platform dependent,

they are retrieved and updated dynamically with view syn-

thesis for a stable result on a specific platform. Therefore, α1

is given by

 2
1 ,

1

n
W NWH

F i
N i

 , (4)

where N is the total number of processed frames; n is the

total number of cores; W and H represents the image height

and width, respectively. Similarly, α2 is given by

,

1
2

([] [])
, ,

1 1

n
W

M i
N i

hn i
N j N j

l i r i
N i j

 . (5)

3.2. Workload balancing

To balance the workload among cores, workload overload-

ing of each core is measured by comparing with the targeting

average workload:

1

1

n
W W W

i i in i

 . (6)

1559

ΔWi larger than zero represents the workload assigned to

core i is higher than average, which needs to be offloaded.

Inversely, lower than zero represents more workload can be

assigned.

Then, the workload among the cores can be adjusted in a

recursive way. Taking horizontal partitioning as an instance,

the height of partition 1, h1, can be determined to compen-

sate the workload difference ΔW1. Then, the height of parti-

tion 2, h2, can be adjusted to compensate ΔW1+ΔW2 due to

the variation in h1. The process can be carried on until all the

partitions are adjusted. Thus, for hk (k=1,2,…,n-1), if the

corresponding workload difference is positive/negative, the

partition height is reduced/increased by searching up-

ward/downward line by line until

2 ([] [])
1 2 , ,

1

h h kk
w h N j N j W

m l m r m i
j h i

k

 ,

 1

1

, >0

1, <0

k

i
i

k

i
i

k

m

k

W

W

 . (7)

The obtained Δh will be used to update the partition size hk

for the next frame by

1

1

, >0

, <0

k

k i
inew

k k

k i
i

h h

h

h h

W

W

 . (8)

If the color components associated with the texture fol-

lows 4:2:0 sampling format, one will be added to new

kh if

new

kh is an odd value.

3.3. Overhead analysis

For the storage complexity overhead introduced by the pro-

posed workload balancing algorithm: recording the total

number of non-hole pixels in each line of the left and right

warped images introduces maximum 2×H×log2(W)/8 bytes.

Taking the video with the resolution of 1920×1080 as an

instance, 3.2K bytes are needed, which is negligible to im-

plementation.

For the computational complexity overhead introduced by

the proposed workload balancing algorithm, only nine addi-

tions and one comparison are needed for each line’s adjust-

ment. Experiment results reveal that the proposed algorithm

only takes up an average of 0.012% of the total execution

time, which is feasible for its implementation on portable

devices.

4. EXPERIMENTAL RESULTS

The proposed parallel system is integrated into reference

software, VSRS 3.5 [8], to test its performance. The experi-

ments are conducted on a PC with an Intel®Core™ i5-3470

3.2GHz quad-core processor and 12 GB RAM under 64-bit

Windows 7. 1-D mode view synthesis with half-pixel preci-

sion is selected for VSRS, while other options are set to the

default values [8]. Four sequences with representative fea-

tures in content and disparity are selected for testing, as

listed in Table 1. “Syn. View” represents the virtual view

synthesized by the input views. For simplicity, the name of

sequences will be abbreviated by the first three characters in

the following.

Table 1. Test sequences and viewpoints.

Seq. Res.
No. of

Frames

Input

Views

Syn.

View

Bookarrival [9] 1024x768 100 10, 8 9

Champagne_tower [10] 1280x960 100 39, 41 40

Newspaper [9] 1024x768 100 4, 6 5

PoznanStreet [11] 1920x1088 100 3, 5 4

4.1. The proposed system without workload balancing

The performance of proposed parallel system without work-

load balancing (denoted by Propw/oWB), is compared with

that of single-thread VSRS (denoted by VSRS) in Table 2,

where 2-thread (n=2) and 4-thread (n=4) parallel synthesis

cases are evaluated. As shown in the table, Propw/oWB

accelerates the view synthesis process by an average of

1.8/3.25 times under 2-thread/4-thread case. Meanwhile,

only 0.007/0.003 dB degradation in the synthesis quality is

introduced, which is negligible to real applications and pre-

sents no influence on the visual quality. The slight quality

degradation is mainly caused by the reduction in the pixel

correlations around the partition boundaries.

Table 2. Synthesis speed and quality compared with VSRS.

Seq. Speedup Ratio ΔPSNR(dB)

n = 2 n = 4 n = 2 n = 4

Boo. 1.82 3.31 -0.026 0.002

Cha. 1.81 3.16 -0.001 0.001

New. 1.74 3.24 0.001 -0.001

Poz. 1.83 3.30 -0.002 -0.013

Ave. 1.80 3.25 -0.007 -0.003

4.2. The proposed system with workload balancing

The performance of proposed parallel system with workload

balancing (denoted by Propw/WB), is compared with that of

Propw/oWB in Table 3. The performance of workload

balancing is measured by the average reduction ratio in the

normalized maximum workload difference among the cores,

which is given by

max max
,WB ,WB ,WB, [1,] [1,]1

1

max max
,nWB ,nWB ,nWB, [1,] [1,]

W W W
i j ii j n i n

WDRR
N N

W W W
i j ii j n i n

, (9)

where Wi,nWB and Wi,WB are the workload of the ith partition

processed in Propw/oWB and Propw/WB (without and with

workload balancing), respectively. So, the larger WDRR is,

the larger the improvement in workload balancing among the

cores is achieved. The workload is measured by the execu-

tion time. As shown in the table, Propw/WB improves work-

load balancing among the cores by an average of

90.65%/79.57% together with an additional 1.05/1.07 times

acceleration in the synthesis speed for 2-thread/4-thread

1560

cases, respectively. Also, it keeps the same or even better

synthesis quality than that of Propw/oWB. Ultimately,

Propw/WB outperforms VSRS by an average of 1.89/3.47

times in synthesis speed with only a quality loss of

0.003/0.005 dB for 2-thread/4-thread cases, respectively.

Fig. 2 and 3 compares of the size of partitions and the

workload assigned to each core for sequence “Bookarrival”

and “Champagne_tower”, respectively. “Bookarrival” and

“Champagne_tower” are different in resolution and back-

ground feature. As that demonstrated in the figures, with the

workload balancing algorithm, the partition size will be

adjusted adaptively with video content and the workload

among the cores is balanced during the process.

Table 3. Comparison between Propw/WB and Propw/oWB.

Seq. WDRR (%) Speedup Ratio ΔPSNR (dB)

n=2 n=4 n=2 n=4 n=2 n=4

Boo. 89.26 81.72 1.03 1.07 0.014 0.000

Cha. 91.81 81.12 1.03 1.05 0.005 0.003

New. 91.05 78.55 1.07 1.06 -0.008 -0.010

Poz. 90.48 76.67 1.07 1.09 0.003 -0.002

Ave. 90.65 79.57 1.05 1.07 0.004 -0.002

0 20 40 60 80 100
0

200

400

600

768

Frame number

P
a

rt
it
io

n
 L

o
c
a

ti
o

n

 Propw/oWB

 Propw/WB

0 20 40 60 80 100
0.36

0.38

0.4

0.42

0.44

0.46

Frame number

T
h
re

a
d
 T

im
e
(s

)

Propw/oWB

 Propw/WB

(a) (b)

0 20 40 60 80 100
0

200

400

600

768

Frame number

P
a
rt

it
io

n
 L

o
c
a
ti
o
n

Propw/oWB

Propw/WB

0 20 40 60 80 100
0.16

0.18

0.2

0.22

0.24

Frame number

T
h

re
a

d
 T

im
e

(s
)

Propw/oWB

Propw/WB

(c) (d)

Fig. 2. Bookarrival sequence: (a) and (b) partition size and work-

load for 2-thread case; (c) and (d) partition size and workload for

4-thread case.

0 20 40 60 80 100
0

200

400

600

800

960

Frame number

P
a

rt
it
io

n
 L

o
c
a

ti
o

n

 Propw/oWB

 Propw/WB

0 20 40 60 80 100

0.55

0.6

0.65

Frame number

T
h

re
a

d
 T

im
e

(s
)

Propw/oWB

 Propw/WB

(a) (b)

0 20 40 60 80 100
0

200

400

600

800

960

Frame number

P
a

rt
it
io

n
 L

o
c
a

ti
o

n

Propw/oWB

Propw/WB

0 20 40 60 80 100

0.26

0.28

0.3

0.32

0.34

0.36

Frame number

T
h
re

a
d
 T

im
e
(s

)

Propw/oWB

Propw/WB

(c) (d)

Fig. 3. Champagne_tower sequence: (a) and (b) partition size and

workload for 2-thread case; (c) and (d) partition size and work-

load for 4-thread case.

Fig. 4 compares the subjective quality between

Propw/WB and VSRS for Bookarrival and Cham-

pagne_tower. As shown in the figure, no visual quality dif-

ference can be detected in both 2-thread and 4-thread cases.

No quality degradation can be observed visually.

(a) (d)

(b) (e)

(c) (f)

Fig. 4. Frame 1 of synthesized view 9 of Bookarrival gener-

ated by: (a) VSRS; (b) and (c) Propw/WB under 2-thread and

4-thread, respectively; Frame 1 of synthesized view 40 of

Champagne_tower generated by: (d) VSRS; (e) and (f)

Propw/WB under 2-thread and 4-thread, respectively.

5. CONCLUSIONS

Targeting multi-core platforms, a workload balanced parallel

view synthesis system for FTV is proposed in this paper,

which balances the workload using the distribution of non-

hole pixels after warping. The simulation results show that

the proposed parallel view synthesis system outperforms

VSRS by 1.96/3.59 times at maximum in synthesis speed with

the reality that the workload difference among the cores is

reduced by 91.81%/81.72% after workload balancing for 2-

core/4-core systems, respectively. Also, both the subjective

and objective quality of the synthesized view are not de-

graded, which is very beneficial to fast view synthesis on

multi-core platforms.

6. ACKNOWLEDGMENT

This work was supported in part by the NSFC-Guangdong

Joint Foundation Key Project (U1201255) and project of

NSFC 61371138, China.

1561

7. REFERENCES

[1] M. Tanimoto, M.P. Tehrani, T. Fujii, and T. Yendo, “Free-

Viewpoint TV,” Signal Processing Magazine, IEEE, vol. 28, no. 3,

pp. 67-76, 2011.

[2] G. Tech, K. Wegner, Y. Chen, and S. Yea, “3D-HEVC test

model 5,” in JCT-3V Doc. JTC3V-E1005, 5th Meeting, 2013.

[3] C. Fehn, “A 3D-TV approach using depth-image-based render-

ing (DIBR),” Proc. of VIIP, vol. 3, pp. 84-88, 2003.

[4] J.I. Jung, and Y.S. Ho, “Parallel view synthesis programming

for free viewpoint television,” Signal Processing, Communication

and Computing (ICSPCC), 2012 IEEE International Conference

on, pp. 88-91, 2012.

[5] H.C. Shin, Y.J. Kim, H. Park, and J.I. Park, “Fast view synthe-

sis using GPU for 3D display,” Consumer Electronics, IEEE

Transactions on 54, no. 4, pp.2068-2076, 2008.

[6] K.H. Sihn, H. Baik, J.T. Kim, S. Bae, and H.J. Song, “Novel

approaches to parallel H.264 decoder on symmetric multicore

systems,” in Acoustics, Speech and Signal Processing (ICASSP),

IEEE International Conference on, pp.2017-2020, 2009.

[7] Sinha, Amit, and A.P. Chandrakasan, “Dynamic voltage sched-

uling using adaptive filtering of workload traces,” VLSI Design,

2001. Fourteenth International Conference on, IEEE, pp. 221–226,

2001.

[8] View Synthesis Reference Software (VSRS 3.5) in Tech. Rep.

ISO/IEC JTC1/SC29/WG11, 2010.

[9] http://sp.cs.tut.fi/mobile3dtv/stereo-video/.

[10] MPEG-FTV Test Sequence, available at:

http://www.fujii.nuee.nagoya-u.ac.jp/~fukushima/mpegftv/.

[11] D. Rusanovskyy, K. Müller, and A. Vetro, “Common test

conditions of 3DV core experiments,” in JCT-3V Doc. JCT3V-

D1100, 4th meeting, 2013.

1562

