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ABSTRACT

Due to the ongoing biodiversity crisis, many species including great
apes such as chimpanzees or gorillas are threatened and need to be
protected. To overcome the catastrophic decline of biodiversity, biol-
ogists recently started to use remote cameras for wildlife monitoring.
However, the manual analysis of the resulting image and video mate-
rial is extremely tedious, time consuming, and highly cost intensive.

To overcome the burden of time-consuming routine work we
studied and proposed novel approaches for automatic chimpanzee
identification in our previous work. Starting from the assumption
that humans and our closest relatives share similar facial properties,
algorithms for human face recognition were adapted and extended
for this purpose. However, the proposed algorithms were designed to
recognize chimpanzee individuals in still images only. In this paper
we extend these ideas towards chimpanzee identification in video se-
quences. Thus, a novel frame weighting approach is presented which
significantly improves the system’s accuracy.

Index Terms— Animal Biometrics, Face Recognition

1. INTRODUCTION AND MOTIVATION

Due to the ongoing biodiversity crisis, many species are on the brink
of extinction. Primates like chimpanzees or gorillas are hit by the
crisis and belong to a species that is severely endangered. Walsh
et al. [1] for instance reported a decrease of ape populations in west-
ern equatorial Africa by more than a half between 1983 and 2000.
Similar conclusions were drawn by Campbell et al. in [2]. They ob-
served a 90% decrease of chimpanzee sleeping nests in Côte d’Ivoire
between 1990 and 2007. Those agitating results demonstrate the ur-
gent need to intensify close surveillance of this threatened species in
order to protect the remaining populations. However, effectively pro-
tecting animals requires good knowledge of existing populations and
fluctuations of population sizes over time. Non-invasive monitoring
techniques using autonomous recording devices is therefore tremen-
dously increasing [3]. However, the collected data often needs to
be evaluated manually which is a time and resource consuming task.
Consequently, there is a high demand for automated algorithms to
analyze remotely gathered video recordings. Starting from the as-
sumption that humans and great apes share similar properties of the
face we explored face detection and recognition techniques, origi-
nally developed for human identification, to recognize chimpanzees
in wildlife footage in our previous work [4, 5, 6, 7]. However,
the proposed framework was only capable to automatically detect
and identify chimpanzee faces in still images. In this paper we
extend these ideas to face detection, tracking, and identification in
video sequences. A novel frame-weighting approach is proposed
which implicitly exhibits temporal information of video recordings.

The proposed approach is thoroughly tested and evaluated on self-
established realistic real-world video datasets of free-living and cap-
tive chimpanzee individuals. It is shown that the proposed approach
performs better than recognition on a single frame basis as well as a
uniform weighting scheme.

2. PREVIOUS WORK

Based on the assumption that humans and our closest relatives share
similar properties of the face, we suggested to adapt and extend face
recognition techniques for the identification of great apes. In [4] we
showed that state-of-the-art face recognition techniques are capable
to also identify chimpanzees and gorillas. Based on these results we
significantly improved the performance of the proposed system by
using Gabor features in combination with Locality Preserving Pro-
jections (LPP) for dimensionality reduction in [5]. A Sparse Repre-
sentation Classification (SRC) scheme was used to assign identities
to the facial images. Although the obtained results were very promis-
ing, the accuracy of the system decreased significantly if non-frontal
face images were used for testing. We later combined face and facial
feature detection as well as face recognition and presented a com-
pletely automated identification system for chimpanzees in [6]. In
order to increase the robustness of the proposed framework against
difficult lighting situations, pose, partial occlusion, and the vast num-
ber of occurring expressions we additionally combined the results of
global and local features using a decision fusion scheme [7].

In summary, our proposed framework consists of three main
parts: Face and Facial Feature Detection using a state-of-the-art
rigid object detector proposed in [8], Face Alignment using an affine
transform based on detected coordinates of both eye and the mouth-
center, and Face Recognition based on global and local feature ex-
traction, feature space transformation, classification, and decision
fusion [6, 7]. It is known from the literature that different features
tend to misclassify different patterns. Thus, first global Gabor-based
features are extracted from the aligned face. After feature space
transformation using LPP, a SRC-based classification scheme, orig-
inally proposed by Wright et al. in [9], is utilized for identification
using global features. Additionally, SURF descriptors are extracted
on six facial fiducial points around both eyes and the nose in or-
der to exhibit individually unique permanent wrinkle patterns of the
chimpanzee’s face. A final local feature vector is subsequently con-
structed by concatenating the resulting local descriptors. An SVM
with RBF-kernel is trained and utilized to predict the individual’s
identity using local features. The results of the proposed local and
global face recognition pipeline are subsequently fused by taking the
confidences of both classification schemes into account. For details
of the developed Primate Recognition Framework (PRF) the inter-
ested reader is referred to [6, 7].
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3. IDENTIFICATION OF PRIMATES IN VIDEOS

One key-step for face recognition in video is to simultaneously track
multiple detected faces. Once each tracked target is assigned to a
face-track, faces are first aligned as done for still images. Subse-
quently, modules for quality assessment are applied which analyze
parameters such as pose and visual quality in order to select the
frames best suited for recognition. Each selected and aligned face
is subsequently identified by means of the algorithms we presented
in our previous work [6, 7] and were outlined in the previous sec-
tion. To further enhance the system’s accuracy, a frame-weighting
approach is proposed which implicitly exhibits the temporal infor-
mation in video recordings.

Tracking by Continuous Detection Once faces were detected
they have to be tracked through the video sequence. Therefore,
unique object-IDs are assigned to each detected face which are
maintained for the subsequent frames. This procedure results in a
so called face-track, a collection of faces from one single individual
in various appearances. Within the proposed framework, a face and
facial feature detection and tracking library named SHORE, devel-
oped by Küblbeck and Ernst in [10] and extended in [8] to detect and
track faces of great apes, is utilized. They suggested a tracking by
continuous detection approach in [10] to overcome the deficiencies
of pure tracking algorithms. Each frame is processed with a fast and
accurate real-time face detector. A motion model is then applied to
connect the detections of subsequent frames. In order to estimate
the current state of a tracked face from the detection results, a linear
Kalman filter is applied. For details about the face detection and
tracking procedure the interested reader is referred to [10, 8].

Figure 1 shows an excerpt of a video sequence gathered in the
zoo of Leipzig, Germany, and an extracted face-track for one of the
individuals present in the video. As can be seen, not all frames are
equally well suited for automatic identification since the proposed
recognition framework is optimized for full-frontal faces. Hence,
the frames which are best suited for recognition are automatically
selected in a second step which involves assessment of various pa-
rameters regarding visual quality of a face.

(a)

(b)

Fig. 1. (a) Three selected frames of a video gathered in the zoo of Leipzig, Germany.
The detection and tracking results by SHORE are superimposed. (b) An extracted face-
track of one of the three individuals in the video sequence.

Best Frame Selection This section describes algorithms for full-
automatic selection of the frames of a face-track which are best
suited for identification. The most important cues to achieve high
recognition accuracies in practical applications are the pose of a face
and its visual quality. Both parameters are analyzed automatically.

Automatic head pose estimation has been an active research
topic for decades. For the application presented in this thesis an

exact estimation of pitch, roll, and yaw angles in 3D space is not re-
quired. Since the proposed face recognition pipeline is designed for
frontal face images, the objective of the proposed pose estimation
module is to automatically select those frames within a face-track
that contain faces in a near-frontal pose. The following head pose
estimation technique is proposed which performs sufficiently well
for the task at hand. First, detected and tracked faces are aligned
by applying an affine transformation based on the detected eye
and mouth coordinates and subsequently converted to gray-scale.
As holistic face representation we extract Gabor-based features as
described in our previous work [6] which are later used as global
features for the recognition part and can therefore be reused again
for identification. A PCA is subsequently applied to project the re-
sulting high-dimensional feature vectors into a smaller dimensional
subspace of size 100. For classification, an SVM with RBF kernel
was trained on a set of frontal and non-frontal primate faces. The
two user-defined parameters (C, γ) were optimized during training
using a grid-search in combination with a 5-fold cross-validation on
the training set. The resulting model was finally saved and is applied
in the test case. The confidence measure of the SVM prediction
is utilized as a weighting factor for every face within a face-track.
Hence, the Pose-Quality is a number between 0 and 1. The higher
the value, the more frontal is the pose of the considered face.

Besides the head pose, other parameters regarding the visual
quality of the facial image are crucial for accurate identification.
Thus, we further propose a number of lightweight software mod-
ules which estimate the visual quality of an image. For instance, the
low-pass filtering characteristic of a blurred image might not contain
sufficient detailed information important for accurate identification.
Our blur estimation approach is influenced by ideas of Liu et al.
[11]. The detection of blurred images is done by analyzing its Lo-
cal Power Spectrum Slope. First, the power spectrum’s slope of the
global image αg is calculated. Then the input image is divided into
3× 3 blocks and the slope of the power spectrum is calculated sep-
arately for each resulting region. The final metric for each patch p
is then given by ηp =

αp−αg

αg
,where αp is the slope of the power

spectrum of patch p. The overall blur measure is finally given by av-
eraging the ηp’s of all patches. After normalization, a Blur-Quality
measure in the range [0, 1] can be used.

Besides pose and image blur, overexposure and underexposure
are other important photometric factors for visual quality which
should be taken into account. Keeping in mind that the proposed
system should work in real-time, simple histogram-based statistics
are assessed in order to estimate the lighting conditions of a facial
image. Due to space constraints in this paper the interested reader is
referred to our previous work [12]. The Lighting-Quality is again a
real number scaled between 0 and 1. All quality measures are finally
combined in a multiplicative fashion in order to sort the images of
an extracted face-track according to the overall Face-Quality.

Frame Weighting As outlined above, video acquisition in natural
habitats of great apes often leads to large quality variations between
frames. Thus, recognition in a single frame might often not lead to
the desired result. To overcome this issue, a novel frame-weighting
approach is proposed which combines individual frame-based classi-
fications into a single score per face-track and hence penalize uncer-
tain frames. Based on the face-quality modules outlined above, the
F frames with the highest quality are selected, aligned, and classified
according to proposed image face recognition approach described in
our previous work. The following confidence measures can subse-
quently be derived for every classification: First, three measures for
the recognition pipeline using global features and SRC are proposed:

1549



(1) Minimal Residual : The minimal residual between the test sam-
ple t and the matrix of training samplesA defined as

arg min
i
ri(t) with ri(t) = ‖t−A(δi � p̂1)‖2 (1)

is chosen as the first confidence measure, where δi is the characteris-
tic function of class i, p̂1 is the sparse coefficient vector obtained by
`1-norm minimization, and � represents the Hadamard-Schur prod-
uct also know as the element-wise product. The smaller the minimal
residual, the more confident is the classifier.
(2) Distance between the first and second residual : In case of
misclassification, the difference of the minimal and second small-
est residual is usually smaller than in the correct case. Hence, the
absolute difference of the smallest two residuals ∆r is used as sec-
ond confidence measure. A confident classification should have a
high ∆r, while for incorrect classifications the difference of the two
smallest residuals is rather small.
(3) Sparse Concentration Index (SCI) : Besides the minimal resid-
ual, Wright et al. [9] propose to utilize the sparsity of the vector p̂1

as an additional confidence measure of SRC. Therefore, they intro-
duced a measure called SCI which is defined as

SCI(p̂1) =
C ·maxi (‖δi � p̂1‖1) /‖p̂1‖1 − 1

C − 1
∈ [0, 1], (2)

where C is the number of classes. The lager the SCI, the sparser
the vector p̂1 which in turn is a measure for the confidence of the
classifier.

Secondly, two confidence measures for the recognition pipeline
using local features in combination with an SVM are taken into ac-
count:
(4) SVM Probability: The probability estimates of LibSVM [13,
14] are used as confidence measures for identification based on local
features. While for SRC the minimal residual determines the class
affiliation, for SVM the test sample is assigned to the class with the
maximum probability.
(5) Difference of the Two Highest Probabilities: As the differ-
ence of the two smallest residuals can be used as additional confi-
dence measure for SRC-based classification, the difference between
the two largest probabilities is utilized for classification via SVM.

All five measures are scaled between 0 and 1 and are subse-
quently concatenated into a confidence vector v. The goal of the
proposed frame-weighting approach is to estimate the probability
that the classification of frame f was correct. A weighting factor
can then be assigned to each classified frame. The weighted confi-
dences of the selected frames are then aggregated in order to obtain
a final prediction. Thus, frame-weighting is divided into a training
and test phase:

Training: First a 20-fold Monte-Carlo cross-validation on the
training set is applied in order to construct the confidence-vectors
for each correct and incorrect classification as explained above. This
procedure results in two clusters of correct and incorrect classifi-
cations in 5-dimensional space. Figure 2(a) depicts a scatter plot
of the resulting clusters. Misclassifications are mostly located in
one particular corner while the cluster of correct classifications is
more scattered. However, it can be seen that correctly classified
samples can be separated from misclassifications quite well, since
only a few incorrectly identified samples are located in the area
of the majority of correct classifications. In order to estimate the
probability of a correct classification, the next step is to calculate the
Mahalanobis-distances [15] of each sample to the cluster of correct
and to the cluster of false classifications. In previous experiments
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Fig. 2. Figure (a) depicts clusters of the proposed confidence vectors of correct classi-
fications (green samples) and incorrect classifications (red samples). Note that for illus-
tration purposes only the first three dimensions of the 5-D space are plotted. Figures (b)
and (c) illustrate the histograms of the difference of Mahalanobis-distances ∆dM (t)
for correct and incorrect classifications, respectively. The fitted Extreme-Value Distri-
butions are superimposed in black.

we noticed that the difference of Mahalanobis-distances ∆dM (t) is
more distinctive than the distance to a good or bad cluster itself. The
difference of Mahalanobis-distances is given by

∆dM (t) = dICM (t,OIC)− dCM (t,OC), (3)

where dICM (t,OIC) is the Mahalanobis-distance of t to the clus-
ter of incorrect classifications OIC and dCM (t,OC) represents the
Mahalanobis-distance of the test sample to the cluster of correct clas-
sifications. The calculation of ∆dM (t) is repeated in a leave-one-out
fashion, i.e. every correctly and incorrectly classified sample takes
the role of the test vector t once. Figures 2(b) and 2(c) show the
obtained histograms of ∆dM (t) for correct and incorrect classifica-
tions, respectively.

The next step of the training phase is to apply Maximum-
Likelihood-Estimation (MLE) in order to fit an Extreme Value
Distribution (EVD) [16] to the observed data. A detailed derivation
of the subsequent equations can be found in [17]. The Probability-
Density-Function (PDF) given an extreme-valued random variable
x is defined as

P (x) = λ exp
[
−λ(x− µ)− e−λ(x−µ)

]
, (4)

where µ and λ are location and scale parameters, respectively. The
likelihood of drawing N samples xi from an EVD with parameters
µ and λ can thus be written as

P (x1 . . . xN |λ, µ) =

N∏
i=1

λ exp
[
−λ(xi − µ)− e−λ(xi−µ)

]
. (5)

Maximizing Equation 5 with respect to λ and µ yields the
maximum likelihood estimation of both parameters. The Newton-
Raphson-Algorithm [18, 19] can be applied in order to estimate
the two parameters λ̂ and µ̂. The fitted EVDs of the difference of
Mahalanobis-distances of correct and incorrect classifications are
superimposed in Figures 2(b) and 2(c), respectively.

Test: After parameter estimation using MLE, the fitted EVDs can
be utilized in the test phase to calculate the probability that the clas-
sification in frame f was correct and weight the resulting prediction
accordingly.
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The weighting-factor wf of frame f is given by the Bayes’
theorem. Let P (∆dM |C) be the probability of the difference
of Mahalanobis-distances given a correct classification, then the
weighting-factor wf = P (C|∆dM ) is given by

P (C|∆dM ) =
P (∆dM |C)P (C)

P (∆dM |C)P (C) + P (∆dM |IC)(1− P (C))
,

where P (C) is the probability of a correct classification and
P (∆dM |IC) is the probability of the difference of Mahalanobis-
distances given an incorrect classification which can be estimated
from the PDF of the EVD of incorrect classifications fitted during
training. The correct classification probability P (C) is taken from
the mean accuracy of the proposed system after 20-fold crossval-
idation applied on the training set as explained above. Moreover,
P (∆dM |C) is also calculated from the estimated PDF of correct
classifications. Once the weighting factor wf has been calculated
for every frame, the frame-weighting procedure is as follows: Let
sf be the score vector for classifying the face in frame f , then the
cumulative score vector sc ∈ RC×1 is defined as the weighted
average of the score-vectors for all selected frames f = 1 . . . F

sc =
1

F

F∑
f=1

wf · sf . (6)

Once all frames have been processed, the index of the maximum
element of sc denotes the final prediction of the current face-track.

4. EXPERIMENTS AND RESULTS

Datasets and Experiment Design: Video footage of captured as
well as free-living chimpanzees was recorded at the zoo of Leipzig,
Germany and the Taı̈ National Park, Côte d’Ivoire, Africa. The entire
image datasets used for evaluation of our previous approaches were
used for training in this paper. Note that image and video datasets
were gathered independently and thus are completely separated. All
video and image datasets can be purchased over our project website
www.saisbeco.com for benchmark purposes. Hereafter, the video
datasets are referred to as ChimpZoo-Video and ChimpTaı̈-Video, re-
spectively. Statistics about both video datasets can be found in Ta-
ble 1.

Dataset Videos Face Frames per Individuals
Tracks Track in Database

ChimpZoo-Video 14 264 1 − 818 24
ChimpTaı̈-Video 11 198 1 − 1149 49

Table 1. Statistics about the video datasets used for experimentation.

Based on the observation that false-positive detections usually
cannot be tracked and thus the resulting face-tracks are extremely
short, the minimum length of a face-track is set to 10 frames. All
tracks below that threshold are automatically classified as unknown
and are not further processed. This procedure correctly elimi-
nates 91.80% and 95.18% of all false-positive detections for the
ChimpZoo-Video and the ChimpTaı̈-Video dataset, respectively.

Results: Four different approaches are compared:
(1) First Frame: The applied face detection library SHORE was
trained on full-frontal faces with moderate pose offsets. Hence, it
can be assumed that the first frame of a face-track contains a face
with full-frontal pose. Based on this assumption, the first approach
identifies great apes solely in the first frame of a face-track.

(2) Best Frame: With the help of the facial quality estimation mod-
ules proposed, the identity of a face-track is predicted solely based
on the frame with the best estimated quality.
(3) Uniform Weighting: The F = 10 frames with the best facial
quality are selected for identification. The prediction of each frame
is weighted equally, i.e. every prediction contributes the same to the
final result.
(4) Frame Weighting: Finally, the proposed frame weighting
scheme is applied. Again, the F = 10 frames with the best facial
quality are used for subsequent recognition. The decisions for all
analyzed frames are aggregated using the proposed frame weighting
approach.

Cum. Acc. [%] ChimpZoo-Video
Frame Weighting Uniform Best Frame First Frame

Rank-1 70.94 63.55 56.16 53.60
Rank-2 80.30 72.42 68.48 63.45
Rank-3 84.24 73.90 71.44 68.38

ChimpTaı̈-Video
Rank-1 67.40 61.33 58.01 55.53
Rank-2 75.69 68.51 67.95 62.10
Rank-3 78.45 72.32 71.82 67.68

Table 2. Obtained results for the ChimpZoo-Video and the ChimpTaı̈-Video dataset.

Table 2 lists the obtained results for all four approaches. To in-
vestigate the robustness of each approach, the results including rank-
2 and rank-3 are depicted. For both datasets recognition solely based
on the first frame performs worst. Obviously, SHORE is capable
of accurately detecting primate faces even under difficult conditions
which hamper performance of subsequent recognition. By applying
the proposed quality estimation modules and performing recognition
on the frame with the best visual quality results in a higher accuracy
for both datasets. This is particularly obvious for the rank-2 recogni-
tion rate which improves by 5% for both datasets. Thus, first sorting
the frames according to their visual quality can increase the accu-
racy of facial identification quite significantly. The applied uniform
weighting scheme performed significantly better than the previous
two single-frame-based approaches. Hence, taking recognition re-
sults of multiple frames into account seems to improve the system’s
performance significantly because identification is not dependent on
a single frame with potentially bad visual quality. However, the pre-
dictions of each frame are weighted equally and the confidences of
classification in each frame are not taken into account. Substantial
improvements were achieved by the proposed frame-weighting ap-
proach with regard to the previous three approaches. The rank-1
accuracy could be improved by more than 6% on both datasets. The
rank-3 accuracy for the ChimpZoo-Video dataset is thus 84.24% and
78.45% for the ChimpTaı̈-Video dataset.

5. CONCLUSION

In this paper we substantially extended our previous work on full-
automatic identification of great apes from still images to recog-
nition in video sequences. Therefor, we utilized a state-of-the art
face detection and tracking library to create one face-track per de-
tected chimpanzee face. Since not all frames are equally well suited
for subsequent recognition we proposed several software modules to
asses the visual quality of a face. After selecting the best frames,
we applied a novel frame-weighting paradigm which was shown to
outperform approaches based on recognition of a single frame and a
uniform weighting scheme.
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