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++ ARCAA, Queensland University of Technology, Brisbane, Australia.

ABSTRACT

This paper presents a method for localizing an Unmanned Aerial
Vehicle (UAV) in indoor or outdoor environments. The approach has
the ability to estimate the 3D pose of the on-board camera by using a
Harris corner detector and the Levenberg-Marquardt (LM) with the
Random Sample Consensus (RANSAC) algorithm to perform de-
tection. The implementation of such computational intensive tasks
in embedded system is necessary for the autonomy of UAV. Accel-
erators implemented on FPGA provide a solution to reach required
performances. In addition to the algorithm development, we present
the embedding of a real time camera pose estimation algorithm on
a Xilinx System on Programmable Chip (SoPC) platform. Partition-
ing of our embedded application into hardware and software parts
on a Zynq Board has significantly reduced the execution time when
compared with software implementation, while offering necessary
reconfiguration capabilities.

Index Terms— Localization, UAV, 3D pose of the camera,
Harris corner, Matching, Levenberg-Marquardt, Zynq board

1. INTRODUCTION

In the last few years, the development of UAVs attracts lots of re-
search interests. Their utilization has significantly increased in many
tasks such as navigation, recognition [1], surveillance [2] or mili-
tary missions [3]. Our main goal is to develop a UAV with flight
management system including multiple functionalities in the same
design. To achieve UAV autonomy, one particular mission of in-
terest involves computing UAV’s location in unknown environment
using the information gathered by the on-board sensors. Naviga-
tion systems are indispensable components of a UAV, enabling it
accurately localizing the position and orientation, or pose of the
UAV particularly when flying in bad conditions (weather, disaster,
etc.) which decreases the quality of the Global Positioning Sys-
tem (GPS) navigation. This work focuses on the design and im-
plementation of a localization algorithm from a set of images se-
quence taken from an on-board downward looking camera. The 3D
pose estimation of moving camera from its images is one of the
most important functions in a number of applications such as cal-
ibration [4], object recognition/tracking [5] and Simultaneous Lo-
calisation and Mapping (SLAM) [6]. However, these applications
need accurate measurements of the position and orientation (pose)
of the camera with respect to the scene. Previous researches have
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provided localization techniques with respect to vision-based SLAM
for grounded-robot applications that has been largely explored. The
use of such approaches for UAV still requires some improvements
to obtain optimal UAV’s position [7] [8]. Once we have a cali-
brated on-board camera, the problem consists of estimating its rel-
ative position and orientation by matching images (i.e. computing
the inter-image point correspondences), and this is closely related to
the epipolar geometry. Whereas, point correspondences, which have
been extracted from images, always contain wrong matches, estimat-
ing relative pose from such data requires a robust algorithm. A new
algorithm was originally proposed for computing the rotation and
translation between the observed geometry (3D points) and the pro-
jected points (2D points). Combining RANdom SAmple Consensus
(RANSAC) [9] with the Levenberg-Marquardt (LM) [10] method
leads to bearing measurements of the relative pose of an object from
an initial position since our problem can be formulated as a non-
linear least squares problem. To track a set of points through a se-
quence of images, it is required to run a number of iterations and
keep only the hypothesis that fits most of the data as the best one.
The set of points, which totally miss their correct positions (outliers),
can have a severe impact on the solution of the pose problem and it
is important to detect and discard them. The input to the algorithm is
simply the images and the output is the estimated movement together
with a set of interest points in correspondence. The first step of the
algorithm is to compute interest points in each image. This prob-
lem is resolved after by using robust estimation, here in our case
RANSAC, as a search engine. The idea is first to obtain by some
means a set of putative point correspondences. It is expected that
the proportion of these correspondences will in fact be mismatches.
RANSAC is designed to deal with exactly this situation-estimate the
movement and also a set of inliers consistent with this estimate (the
true correspondences), and outliers (the mismatches). The paper is
structured as follows: In section 2, we present the proposed localiza-
tion algorithm considered to get the camera location and orientation
in the world. We then describe the hardware implementation used
in the context of the experimental platform that we have chosen in
section 3. We present also some performance results concerning re-
source costs and execution times. The section 4 concludes the paper.

2. POSE ESTIMATION METHOD

As already stated, our goal is to perform6 degrees of freedom (trans-
lation and the orientation) localization of the UAV in indoor environ-
ment (Fig. 1). The principle is to acquire a sequence of images while
the sensor (which will be embedded on a drone) moves. At each ad-
ditional acquisition, a set of image features is detected and tracked
in the image. The problem of localization and mapping consists in
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Fig. 1. Localization of the UAV using a set of real images.

3 steps. For each new image, we: (1) detect distinctive features in
each new video image using Harris corner detector [11], (2) identify
the detected significant features allows to match 2D image features
in the current image with their correspondences in the key image
features using ZNCC [12]. The goal of this step is to find correspon-
dence between two images. Practically, the current images can be
matched by taking the previous image as the reference image. In
brief, the matching process involves computation of the similarity
measure between two pixels windows and finally (3) estimate cam-
era pose based on 2D correspondence using RANSAC.

2.1. Camera Pose Estimation Algorithm

We present here the camera pose estimation algorithm for a cal-
ibrated camera with known intrinsic camera parameters where6
degrees of freedom of a camera’s pose have to be calculated (i.e.
orientationR=f(φ,θ,ϕ) and positionT = [tx, ty, tz]t between cam-
era and image coordinate system. As shown in Fig. 2, our estimation
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Fig. 2. The proposed localization algorithm.

methodology initially considers the corner locations of the current
image extracted by the Harris corner detector (features at timetn)

and windowed image patches of the key image (features at time
tn−1). Given these two consecutive imagesIl andIr, our method
directly finds a set of primary matches features using ZNCC (Zero-
Mean Normalized Cross-Correlation) approach. These matched
couples often contain many incorrect matches. In order to achieve a
robust matching algorithm, the RANSAC algorithm is used in com-
puting 3D position of the camera. We thus propose the following
LM algorithm for refining the parameters:

I- We initialize the number of estimationN=100 performed by
RANSAC before converging and the maximum number of inliers
MAX inlier = 0. Then, we give the intrinsic parameter matrixK
of the calibrated camera (i.e. with known intrinsic parameters):

K =





αu 0 u0

0 αv v0
0 0 1



 (1)

whereu0 andv0 are the column and row where the optical axis
(ZC axis of the camera frame) intersects the image plan andαu and
αv encode the scale change between metric coordinates and pixel
coordinates. It is equal to the ratio of the focal length on the vertical
pixel size.

Then, we give initial extrinsic parametersP =[φ, θ, ϕ, tx, ty,
tz], the3×3 rotation (orientation matrixR0(3, 3) and the3×1 trans-
lation (position) vectorT0(3, 1) whereφ, θ, ϕ are rotations around
theXC , YC andZC axis ofRC respectively (see Fig. 1). To get the
rotation matrixR0, 3 × 3 rotation matrix from the 3-vector[φ,θ,ϕ]
and the translation vectorT0, we use the following conversions:

R0 =











cosϕ.cosφ− −sinϕ.cosθ.sinφ− sinθ.sinφ

sinϕ.cosθ.sinφ cosϕ.cosθ.sinφ

cosϕ.cosφ+ −sinϕ.cosφ+ −sinθ.sinφ

sinϕ.cosθ.sinφ cosϕ.cosθ.sinφ

sinϕ.sinθ cosϕ.sinθ cosθ











T0 =





tx

ty

tz





II- for kth(k = 1 : N) estimation

1. Applying Levenberg Marquardt algorithm (LM). Forq from
1 to N estimation

(a) Randomly choose 6 correspondences.

(b) For the chosen matched pairs, we compute the error:
ε=0− [K−1.ml

j ]
t.Elr

ij .K−1.mr
j whereml

i andmr
j are

the projection of a3D pointPk on the panoramic im-
agesIl andIr respectively. NotingElr

ij is the essential
matrix of the two columns containingmr

i andml
j , we

can write:Elr
ij = [T ]qX .Rq where[T ]X is the antisym-

metric matrix of the vectorT .

(c) Estimation process terminates when the iteration counter
exceeds a pre-specified limit.

(d) Compute the updated parameters vectorPc = P + δij ,
wherePc=[φc,θc,ϕc,txc,tyc,tzc].

2. for all theM correspondences (x andy positions of an ex-
tracted corner in the right and left images):

(a) RecalculateR = f(φc, θc, ϕc) andT = [txc, tyc, tzc]
using the updated parameters ofPc obtained after min-
imization.
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(b) Calculatex, y andz (3D position) positions of the pro-
jection of the corresponding model point in the right
image using the obtained extrinsic parameters (i.e.R

andT ).




x

y

z



 =





R(1) R(2) R(3) T (1)
R(4) R(5) R(6) T (2)
R(7) R(8) R(9) T (3)



 .









u

v

1
1









(c) Compute the error projection between the left image
coordinates and projective coordinates and count the
number of inliersm.

3. if(m>MAX inlier) Update bestPsave =Pcurr,MAX inlier

= m and record all the inliers.

III- refinement: re-estimatePsave from all the inliers using the
LM algorithm.

IV- The 6 parameters (φ, θ, ϕ, X, Y , Z) of Psave define the
orientation and the position parameters of a panoramic camera.

3. EXPERIMENTAL RESULTS

3.1. Experiment Result with Simulation Data

To show the validity of the proposed camera pose estimation, we
applied it on simulated data. In order to investigate the efficacy of
the proposed approach, we perform experiments with a calibrated
sensor (HDR-CX240E). For accurate measurements, a sophisticated
camera calibration is a crucial step before using the sensor for local-
ization or 3D reconstruction. The calibration step consists in com-
puting the values of geometrical model parametersu0, v0, αu and
αv. The image resolution is1280 × 720 pixels. We obtainu0 and
v0 equal to 615.5 and 434.4 respectively. We record two different

Fig. 3. RANSAC results: green points and lines represent inliers
(number of inliers: 626).

sequences: forward motion (Translation along X axis see Fig. 3) and
motion on a sphere around the scene in 45 degrees with the cam-
era pointing to the center. In case of forward motion, the motion
composed of (Ttheo = [1, 0, 0]t,Rtheo = I3x3) is the theoretical so-
lution. The whole process is executed recursively until the result is

Table 1. The average of computing time for each processing step
per frame

Processing steps number of points Execution time(s)
Harris 715/643 0.7829308

Matching 256 0.035613
RANSAC 146 0.090461

stable. Once this has been done, the camera trajectory is estimated
in a two processing steps : the first one focuses on the problem of
recovering the camera orientation,Rexp and the second step returns
an estimate for the camera translation,Texp. Given enough points,
the measurement errors also give good results as shown in Eq. 2.

Rexp =





0.988 0 0
0 0.974 −0.007
0 0.004 0.998



 , Texp = [0.926, 0.093, 0.184]t

(2)
For the next experiment, the measurements error is also fine as

shown in Eq. 3 and 4 and the RANSAC step is computationally ex-
pensive since it requires solving a nonlinear minimization problem
and does not work well for few points.

Rtheo =





0.7 0 0.7
0 0.999 0

−0.7 0 0.7



 , Rexp =





0.634 0.125 0.611
0.145 0.988 0.037
−0.678 0.169 0.607





(3)

Ttheo = [0.7, 0, 0.7]t, Texp = [0.641, 0.059, 0.636]t (4)

The errors in rotation and translation depend on several factors such
as the initial approximations of the rotation and translation vectors
and LM parameters used for the optimization process. In addition,
the motion estimation highly depends on interest point features den-
sity in each image. Now, we are trying to adapt the proposed ap-
proach to process real data taken from an urban environment in order
to obtain accurate results without losing precision.

3.2. Implementation of localization algorithm on a ARM

The software implementation of the proposed algorithm with a min-
imum memory footprint is a straightforward solution for the deploy-
ment of the application in our flight management system. ARM Cor-
tex A9 dual core processor is a popular embedded processor with a
SIMD NEON coprocessor. It has a low cost, low power consump-
tion and small footprint. With the Zynq, we can port our existing
application to run on the ARM processor, without the need for an
FPGA designer. The pose estimation code is written in embedded
C. The development software is Xilinx Vivado 2014.2 under Win-
dows7. The ARM cores run at 667MHz and the off-chip 1-GB
DDR3 memory at 533MHz. The time required for execution of the
different processing step is calculated. Table 1 gives the time delay
to estimate the camera pose between two consecutive frames. The
total time required for pose estimation execution is more than 909
ms. Here, the time required for RANSAC execution is calculated for
100 iterations to generate hypotheses and then keep the best solution
with the smallest number of outliers. As we can remark in Table 1,
this application contains sequential tasks with different degrees of
complexity. In each frame, the different processing phases (Harris,
Matching and RANSAC) are computationally expensive processes
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specially for Harris step. We will try then to get the best performance
out of our code by implementing this part in hardware. The Zynq
SoC offers the possibility to accelerate the implementation through
exploring the possibilities for hardware acceleration.

3.3. Hardware implementation of the proposed approach

To accomplish even better performance than the pure software ver-
sion, we have designed the hardware accelerator for carrying out
Harris detector using the programmable logic (PL) and then inte-
grated it to the complete system (see Fig. 4). Without affecting the
estimation performance, the software parts matching and RANSAC
are executed by an embedded processor (ARM processor), while the
hardware part Harris detector is implemented as an accelerator. By
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Fig. 4. HW Accelerator connected to the processing system (PS).

using AXI-Stream bus to receive the incoming image (or to send the
output image) to the custom IP via DMA module, ACP (Accelera-
tor Coherency Port) AXI can provide maximum bandwidth which
can be benefit for image processing applications. Control signals
of DMA module along with memory addresses are sent by ARM
processor via general purpose AXI-Lite bus which is connected to
central interconnect of the Processing System (PS). Fig. 4 shows
the connectivity of ACP AXI port with the hardware accelerator.
The generated Harris engine PCore is connected to the system us-
ing one AXI4-Lite interface (AXI GP), two AXI-Stream interfaces
(AXI DMA module), and one dedicated port each for clock, reset,
and interrupt. The synthesis target is Xilinx XC7Z020 evaluation
Board. After synthesis, the resource requirement for Harris design
and the complete design for Harris implementation is reported in Ta-
ble 2.

For the pure software version, the Harris stage takes alone more
than 782.93 ms. When the hardware accelerator is used to per-
form this stage, the time is reduced to 172.85 ms achieving a 4.54x
speedup. Moreover, we measured the power consumption of each
component when the hardware accelerator is implemented on pro-
grammable logic or not. In both cases, we observe that the CPU
is consuming about 0.28 watts and the processing system consumes
1.31 watts when no hardware is implemented in programmable logic.
In the first case, the complete design consumes around 1.331 watts
with energy consumption equal to 1,04 J (1, 331 × 0, 782= 1,04 J).

Table 2. On-chip area occupation of Harris design and the complete
design

Resource type Harris design Complete design
BRAM18k 120 134

/280 (43%) /280 (47%)
DSP48E 27 30

/220 (12%) /220 (14%)
FF 4127 7446

/106400 (3%) /106400 (7%)
LUT 6918 11179

/53200 (13%) /53200 (21%)

When the hardware accelerator is implemented on PL, it consumes
more power but if we consider the speedup, it results a significant
energy efficiency improvement. When the hardware is running, the
whole design consumes around 1.357 watts with energy consump-
tion equal to 0,233 J (1, 357 × 0, 172 = 0, 233 J). The hardware
version with the direct access to memory through ACP AXI port can
reduce the energy consumption by 4.46x compared to the pure soft-
ware implementation. This point is crucial for small UAV where
the payload and the size of the battery are critical. So the use of
hardware accelerator connected to the ARM processor on a Zynq
can achieve significant performance improvement for our localiza-
tion application. But a programmable chip also allows to update
the embedded system according to the objectives of the UAV mis-
sion. Moreover dynamic and partial reconfiguration (DPR) at run-
time during the mission is also offering interesting opportunities. It
is for instance possible to replace the Harris detector by a smaller
Fast detector according to luminosity conditions. DPR applied to
the Fast module requires 10ms when a Linux OS running on the
ARM processor (5ms in a standalone version), it means that runtime
adaptation of the UAV embedded system is a valid solution.

4. CONCLUSION

We have demonstrated the implementation of a new camera pose
estimation method in an embedded system based on an hybrid de-
vice. We first describe the Harris corner detector, which is the most
common algorithm for detecting and describing point features. Sec-
ondly, we consider a similarity measure based on ZNCC method. To
avoid the matching issues, the idea is to directly eliminate the wrong
matched couples between an image template and the current image.
Then, the RANSAC is used to estimate the best fitting epipolar ge-
ometry using LM algorithm. Finally, we extract the camera move-
ment from the essential matrix by directly comparing the whole cur-
rent and desired images. The design of an efficient embedded system
is the second objective of this work. The implementation results on
a Zynq Board demonstrate that the hardware accelerator is an effec-
tive way to achieve good performances. Furthermore, the usage of
an hardware accelerator also contributes to improve the power effi-
ciency of the embedded system, this is a key factor in the context of
a small UAV with limited payload. Moreover we experienced DPR
as an effective solution to update the embedded system according to
mission objective before the take off or even during the flight. We
are currently working on enhancing the precision of the proposed
localization approach. In future work, we also plan to evaluate the
performance of our proposal in urban environments.
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