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ABSTRACT

Motion compensation (MOCOMP) is a key procedure in in-
verse synthetic aperture radar (ISAR) imaging because the
accuracy of estimated parameter has a strong influence on
the imaging quality. Generally, the backscattered signal of
a moving target is sampled in fast time dimension, which can
be approximated as the combination of multiple Chirp signals
with a proper Chirp rate. Compared with the Fourier trans-
form, the fractional Fourier transform (FrFT) performs better
compression property due to its unique energy focus ability to
Chirp signals. An improved Cross-correlation method based
on FrFT for parameter estimation is presented in this paper.
It employs the correlation between range profiles compressed
by FrFT to enhance the quality of parameter estimation for
ISAR applications. The method takes good balance between
accuracy and complexity, and is robust to noise. Simulation
results show that the proposed method outperforms the con-
ventional Cross-correlation Method in terms of ISAR transla-
tional MOCOMP.

Index Terms— fractional Fourier transform, ISAR,
cross-correlation, motion compensation.

1. INTRODUCTION

Inverse synthetic aperture radar (ISAR) [1], [2] is a power-
ful signal processing technique for imaging targets in range-
Doppler domains [3]. In order to get a clear and focused
image, it is necessary to estimate the motion parameters of
observed targets, and then conduct the motion compensa-
tion procedure with the so-obtained parameters before imag-
ing process [4], [5]. The cross-correlation method (CCM),
the minimum entropy method (MEM), and the joint time-
frequency method [6], [7] are some of the popular MOCOMP
algorithms in the literature. The CCM is one of the most ap-
plied range tracking algorithms because of its low computa-
tional complexity. The MEM performs more accurate estima-
tion than CCM, but it requires a prior knowledge of estimated
parameters. The JTF based MOCOMP method is effective
because of making use of both time and frequency informa-
tion, nevertheless, computational complexity is increased at
the same time.
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Fig. 1. 2-D ISAR model

In an ISAR imaging system, radar echo signals can be ap-
proximated as a linear combination of multi-component Chirp
signals because the phase term is modulated by a unique chirp
rate induced by the moving characteristics of target. The frac-
tional Fourier transform (FrFT) [8] is a generalization of the
classical Fourier transform, and can be viewed as the Chirp-
basis expansion directly from its definition [9]. The FrFT per-
forms a more centralized compression capability because of
its unique energy aggregation characteristics to Chirp signals
[10], [11]. In this paper an improved cross-correlation param-
eter estimation method based on FrFT is proposed. We make
good use of the high correlation of range profiles processed
by FrFT compression, and take into consideration the bal-
ance between complexity and precision in searching for the
matched-order of FrFT. The theoretical analysis and simula-
tion results reveal that the proposed scheme can effectively
improve the parameter estimation accuracy compared to the
CCM, thus enhancing the translational MOCOMP quality in
ISAR imaging. In particular, it does not acquire prior knowl-
edge and the consequent complexity is much less than that by
JTF method.

2. ISAR ECHO MODEL

In general, the radar line of sight (RLOS), i.e. X axis, is as-
sumed to be along the radial direction, while Y axis is along
the cross-range direction. Considering that the observed tar-

1538978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



get consists of a number of strong scattering points, the base-
band radar echo signal can be given by

s(t) =
∑
k

Ak exp[−j
4πft
c

Rk(t)] (1)

The instantaneous range from the scattering point Pk of
far-field target to radar is defined as Rk(t), 0 ≤ t ≤ Ta, where
Ta is the observing duration. Depicting the initial position of
Pk as Pk(xk0, yk0) = Pk(ρk0∠θk0), where xk0, yk0, ρk0,
θk0 are the Cartesian coordinates and the Polar coordinates,
respectively. For far-field targets, Rk(t) can be written as

Rk(t) = Rt + xk(t)

= Rt + ρk0 cos[θk0 +∆θt]

= Rt + xk0 cos∆θt − yk0 sin∆θt (2)

where Rt is the instantaneous range from the phase center of
the target to radar, xk(t) is the instantaneous projection of Pk

along RLOS, and ∆θt is rotation angle during the coherent
processing interval (CPI), as shown in Fig. 1. In consideration
of the non-uniform motion of the target, both the distance Rt

and rotation angle ∆θt can be expanded in the form of Taylor
series as {

Rt = R0 + vt+ 1
2v

′t2 + 1
3v

′′t3 + · · ·
θt = ωt+ 1

2ω
′t2 + 1

3ω
′′t3 + · · ·

For short CPI, as the rotation angle of the target is very small
during the CPI, a pair of approximate expression sin θt ≈ θt
and cos θt ≈ 1 can be adopted. Therefore we can rewrite (1)
as

s(t) ≈
∑
k

Ak exp{−j
4πft
c

[R0 + xk0

+ (v − yk0ω)t+
1

2
(v′ − yk0ω

′)t2]} (3)

In ISAR imaging processing, radar echo signal is sampled
at time t = (m + nM)Tr to form an ISAR image. Here
m = 0, . . . ,M − 1, n = 0, . . . ,M − 1, are the fast and
slow time dimensional index, respectively. We assume that
the stepped frequency radar transmit a sequence of N bursts,
and that each burst includes M narrow frequency band pulses
with pulse repetition interval (PRI) Tr. Then the sampled data
are arranged into a 2-D data array of size N ×M . During the
fast time period, the rotation angle can be approximated as
zero and carrier frequency is ft = f0 + m∆f . In practice,
the phase terms containing T 2

r are much smaller than other
ones, then the echo signal for each burst sampled at fast time
t = mTr can be expressed as

s(m) ≈
∑
k

Ak exp{−j
4π

c

× [Rkf0+ (∆fRk + f0vTr)m+∆fvTrm
2]} (4)

From(5), the echo signal sampled at the fast time dimension
can be approximated as the combination of a set of LFM sig-
nals with an unique Chirp rate µ1 = ∆fvTr.
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Fig. 2. Range compression. (a) Range profile of 1 burst with
FFT method. (b) Range profiles of 2 adjacent bursts with
FrFT method.
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Fig. 3. Cross-correlation of two adjacent range profiles.

3. FRFT CHIRP-BASIS DECOMPOSITION
CHARACTERISTICS

Consider a single component Chirp signal

x(t) = exp(j2πf0t+ jπµ0t
2) (5)

where µ0 is the Chirp rate. Its p th-order FrFT is defined as

Xp(u) =

∫ +∞

−∞
x(t)Kp(t, u)dt

=A0

∫ +∞

−∞
exp{jπ[(u2 cotα)

− 2(u cscα− f0)t+ (µ0 + cotα)t2]}dt (6)

where Kp(t, u) is the transform kernel function, u is the frac-
tional Fourier domain, p = 2α/π is called matched-order,
and A0 =

√
1− j cotα. The corresponding inverse transfor-

mation is described as

x(t) =

∫ +∞

−∞
Xp(u)K−p(t, u)du (7)
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Fig. 4. Data flow chart of the proposed method.

If the signal argument µ0 and the FrFT argument α satis-
fies the formula

µ0 = − cotα (8)

then (7) can be rewritten as

Xp(u) =A1

∫ +∞

−∞
exp[−j2π(u cscα− f0)t]dt

=A2(u)δ(u− f0 sinα) (9)

where A2(u) = 2π| sinα|
√
1− j cotα exp(jπu2 cotα).

From (10), the FrFT expression of a single componen-
t Chirp signal is a Dirac function with the impulse position at
its weighted center frequency f0 sinα, i.e., the transformation
has the ability of maximum energy aggregation for a Chirp
signal at some unique fractional Fourier domain, which can
be interpreted from the perspective of signal function space.
From (8), the p th-order FrFT function Xp(u) of signal x(t)
can be viewed as the expansion on the kernel function space.
The kernel function {K−p(t, u)} is a set of orthogonal bases
with Chirp forms in u domain. From this viewpoint, the FrFT
might be interpreted as the decomposition in terms of Chirp
signals [12], [13], which makes FrFT to be particularly suit-
able for processing the Chirp signals.

In order to verify the characteristic of FrFT, numerical
simulations of a target consisting of two scatter points were
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Fig. 5. MSE of estimated velocity.

performed. By transmitting a set of stepped frequency signals
and collecting the echo data with SNR=-3dB, then perform-
ing range compression to the data with FFT and FrFT sepa-
rately, we can get corresponding range profiles as shown in
Fig. 2. The range spectrum in Fig. 2(a) is expanded because
of the radial movement of the target, while that in Fig. 2(b)
shows sharp amplitude peaks at range cells of relative scatter
points. Thus FrFT method provides higher spatial resolution
and more robust to noise.

Generally, because the rotation angle of the target is s-
maller than 0.01◦ during a burst, two adjacent echoes are
quite similar in real-valued envelope. As shown in Fig. 2(b),
the curves of the two bursts have different peak positions due
to time delay. Thus, the cross-correlation coefficient of their
range profiles would yield the maximum value at the position
of some correlation time, which is the theoretical foundation
of the conventional CCM. Fig. 3 shows the cross-correlation
curves of two kinds of range profiles above-mentioned. Com-
pared to the traditional Fourier method, the curve of the FrFT
presents sharper peaks and higher resolution, which demon-
strates that the range compression with FrFT instead of FFT
can make better use of data correlation of different bursts.

4. PROPOSED METHOD

According to previous analysis, a parameter estimation
method based on the FrFT is proposed here. The data flow
chart is shown in Fig. 4, and the main steps of the proposed
method are detailed as follows:

Step 1: Sample the baseband echo to get the data array of
size N ×M .

Step 2: Search for the fractional order p0 corresponding
to the Chirp rate µ0 in (6) in the range dimension.

Step 3: Perform the range compression on M frequency
samples by p0-FrFT row-by-row and get N range profiles.
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Fig. 6. ISAR images. (a) ISAR image after MOCOMP by
CCM. (b) ISAR image after MOCOMP by proposed method.

Step 4: Taking the first range profile RP1 as the refer-
ence, and calculate the cross-correlations of other N−1 range
profiles via computing the following cross-correlation factor:
CCRn = |IFFT (FFT (|RP1|) · FFT (|RPn|)∗)|.

Step 5: Estimate the target moving parameter by finding
the range walk ∆R between two range profiles which cor-
responds to the location of the peak value for the calculated
cross correlations.

It is important to note that the algorithm of seeking the
FrFT-order plays a pivotal role in the performance of the pro-
posed method. In step 2, different intervals scanning modes
are employed to reduce the computational complexity. More-
over, Robust Lowess method [14] is utilized for data smooth-
ing in order to get rid of the influence of outburst values.

5. SIMULATION RESULTS

Numerical simulations were performed based on the ISAR
model and radar system described previously. Fig. 5 shows
the mean square errors (MSEs) of estimated velocity by the
proposed method compared with that of the traditional CCM.
The initial frequency of transmitted stepper frequency signal
is 10 GHz. There are 128 burst in total and each consists of
128 narrow-band pulses with PRF=20 KHz. The bandwidth
of each burst is 128 MHz. The moving parameters of the
target are Vr = 65m/s and ω = 0.03rad/s. The number of
Monte-Carlo trials is 150.

It is observed that the proposed method provides a consid-
erable improvement in terms of MSE for all the SNRs. Fur-
thermore, because the noises in radar system have no feature
of energy focusing in the fractional domain, the curve suffers
small floatability when the SNR varies from -10dB to 10dB.
It is worth mentioning that using the MEM method to achieve
the same estimating precision requires such a small computa-
tional intervals that it takes more time to figure out the data,
even through estimating range is provided.

To evaluate the performance of the proposed method in
ISAR imaging, we examine the contrasting results of ISAR
imaging by employing motion compensation with differen-
t parameter estimation methods. As is shown in Fig. 6, the
proposed approach outperforms the traditional method in IS-
AR imaging quality. The ISAR image in Fig. 6(b) looks more
clear and clean than the image in Fig. 6(a), as it benefits from
the high estimation accuracy and effective denoising ability
of the proposed method.

6. CONCLUSION

An improved cross-correlation method of parameter estima-
tion based on the FrFT is proposed for ISAR translation-
al MOCOMP. It takes advantage of energy focus ability of
the FrFT to Chirp signal. To certain extent, the proposed
method may induce some computational complexity due to
the searching of the fractional order compared to the CCM,
but it effectively reduces the parameter estimation error, and
thus improves the precision of translational compensation.
Actually, it still has obvious advantage of low complexity
compared to the JTF method as well as the MEM. Therefore,
the proposed method take a good balance in estimation accu-
racy and computational complexity. Secondly, it is a blind es-
timation technique, so it can be practical applied in the case of
lacking the prior information of estimated parameters. More-
over, this method yields low sensitivity to the noise. That is
to say, it is able to provide a good performance even at low
SNR conditions.
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