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ABSTRACT
We present a method for separating background and fore-
ground optical flow fields induced by observer’s egomotion
and motion of objects, respectively. Optical flow is a vector
field of instantaneous apparent motion computed from suc-
cessive images. An optical flow field can be assumed as a lin-
ear combination with a few basis fields caused by translational
and rotational egomotion and a spatially sparse optical flow
field by the moving objects. We represent two-dimensional
optical flow vectors as complex numbers and stack the fields
as columns of a complex matrix. The low-rank component
naturally corresponds to the egomotional background opti-
cal flow fields and the sparse component captures the moving
foreground objects. We show that these components are suc-
cessfully extracted from optical flow sequences by the robust
PCA applied to the complex matrix.

Index Terms— Complex PCA, vector field decomposi-
tion, ADMM, visual navigation

1. INTRODUCTION

The aim of this paper is to separately obtain optical flow fields
induced by different causes of motion in an image sequence.
Optical flow [1, 2, 3, 4, 5] refers to apparent motion of objects
in a scene caused by the relative motion between an observer
and the scene. Estimation and analysis of optical flow from a
sequence of observed images are beneficial for understanding
the motion of the observer and objects that dirve the optical
flow, especially in the development of mobile robot and au-
tonomous vehicle navigation as well as in the field of visual
biology.

Egomotion can be estimated from the optical flow of rigid
background objects in a scene [6, 7, 8, 9, 5]. In the estima-
tion of egomotion, the optical flow caused by moving fore-
ground objects is considered as outliers to remove from the
egomotional optical flow. Conversely, one needs to identify
the foreground optical flow for motion-based object detection
and tracking [10, 11, 12]. Since an optical flow field is a su-
perposition of the foreground and background fields, decom-
position of the fields would be a comprehensive approach to
the motion analysis.
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We present a method for separating background and fore-
ground optical flow fields. Our method exploits low-rank and
sparse properties of a sequence of two-dimensional optical
flow fields. That is, the background fields are composed of
a few basis fields caused by translational and rotational ego-
motion, while the moving foreground objects induce spatially
sparse optical flow fields. We treat a two-dimensional optical
flow field as a complex vector in order to introduce the robust
PCA technique [13, 14, 15, 16, 17, 18, 19, 20] for the sepa-
ration of the low-rank and sparse fields. We experimentally
show that the low-rank and sparse components correspond to
the optical flow fields respectively induced by egomotion and
motion of objects in a scene.

2. TWO-DIMENSIONAL OPTICAL FLOW

Optical flow is a vector field describing displacement of im-
age intensity in the manner of continuum machanics. In this
paper, we focus on the optical flow of a time-varying image
given as a sequence of two-dimensional images. we denote
the optical flow as

d(x, y, t) =
[

dx(x, y, t)
dy(x, y, t)

]
=

[
dx
dt
dy
dt

]
, (1)

where [x, y]> denotes the position in a two-dimensional im-
age domain, and t refers to time. Given a spatio-temporal
image I(x, y, t), we have an equation of continuity where the
image intensity I is assumed as conserved quantity.

∂I

∂t
+∇>(Id) = 0 (2)

In computer vision, the optical flow is often assumed or ap-
proximated as incompressible. That is, the image intensity is
considered to remain constant through time and displacement.
Introducing this incompressible property to Eq. (2) leads to
the so-called optical flow constraint (OFC).

∂I

∂t
+ d>∇I = 0 (3)

The equation for optical flow, Eq. (3), is not enough to
uniquely determine the vector d. To resolve this underde-
termined issue, computation of optical flow needs to impose
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some known structure or characteristics on the flow, such as
smoothness over the image domain [1], piecewise constant
[2], minimal total variation [21, 22] and so on.

Given a sequence of discrete images I(xm, ym, tn) (m ∈
{1, . . . ,M} and n ∈ {1, . . . , N + 1}), one can compute a
pixel-wise dense optical flow field at each time tn from the
subsequent images at tn and tn+1. We do not go into the
detail of the optical flow computation, because our interest is
in what consist of optical flow fields, and in how to separate
the fields into the components. See [3, 4, 5] for the review of
optical flow computation methods.

3. EXTRACTING LOW-RANK AND SPARSE FIELDS
FROM TWO-DIMENSIONAL OPTICAL FLOW

SEQUENCE

3.1. Optical flow field as superposition

In many stuations, an observed optical flow field can be rep-
resented as a linear combination of a small number of optical
flow fields caused by essentially distinct grounds. Consider,
for instance, an image sequence of a visual scene comprising
of forground objects moving in different directions. Optical
flow of the static background is induced by camera egomotion
and the motion of objects.

d = dego + dobj (4)

Here, dego and dobj are the optical flows by the egomotion and
the object motion, respectively.

While the object motion can be arbitrary, the instanta-
neous egomotion is described by the translational velocity
τ ∈ R3 [m/s] and rotational velocity ω ∈ R3 [rad/s] in the
camera-centered coordinates. The egomotional optical flow
dego can be further modeled as a superposition of optical flows
by the translation and rotation [6, 5]. For a pinhole camera,
we have

dego =
1
Z

[
−f 0 x
0 −f y

]
τ

+
1
f

[
xy −(f2 + x2) fy

f2 + y2 −xy −fx

]
ω. (5)

Here, f is the focal length, and a point with the camera-
centered coordinates [X, Y, Z]> is projected to [x, y]> =
f/Z · [X, Y ]> on the two-dimensional image plane.

An optical flow field in the entire image domain, due to
camera egomotion in particular, is often so well-structured as
to be linearly combined with a few basis fields such as dego

in Eq. (5). In contrast, optical flow by the object motion,
dobj, can be assumed to be spatially sparse unless the objects
occupy the image domain.

3.2. Complex-number representation

In order to find the linear combination of an optical flow
field, it is useful to represent the field as an element of a

linear space. We propose to denote a two-dimensional opti-
cal flow vector d = [dx, dy]> ∈ R2, as a complex number
d = dx + idy ∈ C where i =

√
−1 is the imaginary

unit. Since a dense optical flow field at each time tn com-
puted from a sequence of discrete images is a collection
of optical flow vectors at M individual pixels, it can be
treated as a point in an M -dimensional complex space, i.e.,
c(n) = [d(x1, y1, tn), . . . , d(xM , yM , tn)]> ∈ CM .

The complex-number representation of optical flow fields
brings about some benefits when analyzing field components.

• The geometry of the two-dimensional vector space is
reflected in the algebraic structure of the complex val-
ues. Operations on the optical flow vectors, namely,
addition, scaling and rotation, correspond to addition
and multiplication of complex values, respectively. The
representation of scaling and rotation by complex val-
ues is more compact and faster to compute than the vec-
tor and matrix representations.

• Vector/matrix decomposition techniques are applicable
to the complex-valued representation of optical flow
fields. A sequence of optical flow fields is treated as
a trajectory in the complex vector space CM . Egomo-
tional optical flow fields depict a low-dimensional sub-
space of CM in which the complex vectors of basis op-
tical flow fields reside. Sparse outlying components are
related to moving objects.

Consequently, an optical flow field represented by a com-
plex vector c(n) ∈ CM can be linearly combined with a very
small number of complex vectors of basis fields and a sparse
field. A basis field is unique up to scaling and rotation, which
prompts the subspace of basis fields to be low-dimensional.

3.3. Stable extraction of low-rank and sparse field com-
ponents by robust PCA

Consider a complex matrix of optical flow sequence C =
[c(1), . . . , c(N)] ∈ CM×N . Its n-th column c(n) ∈ CM is
a complex vector whose entries are the optical flow vectors at
time tn in the complex-number representation. The matrix C
is assumed to be represented as

C = L + S + E. (6)

Here, L, S, and E are the complex matrices of optical flow
sequences of background, forground, and error, respectively.
The matrix L is supposed to be low-rank so that its principal
components span the low-dimensional subspace of egomo-
tional optical flow fields. The nonzero entries of S indicate
outlying optical flows possibly induced by moving forground
objects. The term E carries errors caused by image noise and
numerical computation of the optical flow fields.

In the error-free case, the decomposition of the complex
matrix C can be formulated as a convex problem

min
L,S

‖L‖∗ + λ1‖S‖1 subject to C = L + S. (7)
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Here, ‖ · ‖∗ and ‖ · ‖1 are the nuclear norm and the `1 norm,
which promote the low-rankness and sparseness, respectively.
λ1 > 0 is an arbitrary balancing parameter. This is the same
formulation as the so-called robust PCA [13, 14, 18]. One
can easily confirm that efficient RPCA algorithms [15, 16,
17] designed for real-valued matrices can be applied as is to
a complex-valued matrices. Note that the soft-thresholding
(shrinkage) operation, used in the algorithms for solving an
`1-minimization subproblem, is defined for a complex value
z ∈ C as

soft(z, θ) = exp(i arg z) max(|z| − θ, 0). (8)

Even in a non-error-free case, the low-rank and sparse
components, L and S, can be extracted from the noisy ma-
trix C [23]. A convex problem for the decomposition can be
written as

min
L,S,E

‖L‖∗ + λ1‖S‖1 + λ2‖E‖2
F

subject to C = L + S + E (9)

where λ1 and λ2 are balancing parameters. Again, current
algorithms for this three-term decomposition, such as in [19,
20], can be adopted for complex matrices. Although the con-
vergence of the alternating directions method of multipliers
(ADMM) for three or more components is still open problem,
we employ an ADMM-type algorithm [19, 20] that repeats

{U,K,V} = svd(C− Sk −Ek +
1
βk

Yk), (10)

Lk+1 = U soft(K,
1
βk

)VH, (11)

Sk+1 = soft(C− Lk+1 −Ek +
1
βk

Yk,
λ1

βk
), (12)

Ek+1 =
(

1 +
2λ2

βk

)−1

·

(C− Lk+1 − Sk+1 +
1
βk

Yk), (13)

Yk+1 = Yk + βk(C− Lk+1 − Sk+1 −Ek+1)(14)

where soft works element-wise on matrices, svd is the singu-
lar value decomposition, and {βk} is a monotonically increas-
ing positive sequence. Note that VH indicates the conjugate
transpose of V.

4. EXPERIMENTS

4.1. Simulated data

We test the extraction of low-rank and sparse components
from a sequence of simulated vector fields. We generate two
basis fields as shown in Fig. 1(a), and denote them as u(T )

and u(R) ∈ C102
. The sequence is synthesized as c(n) =

l(n) + s(n) + e(n) for n = 1, . . . , 300. Here, we define the
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Fig. 1. Simulated basis optical flow fields u(T ) and u(R), and
the estimates u

(T )
est and u

(R)
est .
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Fig. 2. A snapshot of simulated optical flow field c(n), and
the estimated low-rank and sparse components l

(n)
est and s

(n)
est

(n = 92).

low-rank component as l(n) = v
(T )
n u(T ) + v

(R)
n u(R) with

v
(T )
n = 0.5(1− 2n/300) and v

(R)
n = 0.8 exp(2πin/10). The

sparse component, s(n), is a optical flow field of a set of verti-
cally aligned pixels which horizontally takes a random walk.
e(n) is a Gaussian random noise with deviation 0.1. Figure 2
illustrates the simulated field components and extracted low-
rank and sparse components l

(n)
est and s

(n)
est with λ1 = 3×10−2

and λ2 = 5× 10−2. The angular error of l(n) is 0.43◦ on av-
erage. The errors in flow endpoint are 8% and 3% for l(n)

and s(n), respectively. The three-term decomposition suc-
cessfully identifies the rank-two matrix L, of which principal
components, u

(1)
est and u

(2)
est as shown in Fig. 1(b), estimate

u(T ) and u(R) up to scaling and rotation, respectively.

4.2. Synthetic roadscape

We demonstrate our method on a synthetic driving sequence
in SET 2 of EISATS [24]. The ground truth of the optical
flow sequence with resolution M = 640× 480 = 307,200 is
available for the sequence 2 in SET 2. We made the sequence
c(n) (n = 1, . . . , N = 395) by adding Gaussian noise with
deviation 1.0 [pixel/frame] to each component of the two-
dimensional optical flow vector of the ground-truth fields.

The three-term decomposition takes about a minute on a
modern computer with i7 CPU with 8GB memory. Figure 3
shows examples of separated fields with λ1 = 5 × 10−3 and
λ2 = 1 × 10−3. One can clearly see that the low-rank fields
express the egomotional optical flow by the forward transla-
tional movement of the camera, while the motion of the fore-
ground vehicles is separated in the sparse fields.
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(a) I (b) c(n) (c) l(n) (d) s(n)

Fig. 3. Separation of optical flow fields of a driving sequence (first row: n = 100 and second row: n = 217). (a) Images from
the sequence, (b) optical flow fields, (c) separated low-rank fields, and (d) sparse fields.

u(1) u(2)

Fig. 4. Estimated 1st and 2nd principal components of the
low-rank fields.

Since the sequence of the low-rank fields is expressed as
L = UKVH by the singular value decomposition, the prin-
cipal components stored in the columns of U and V describe
the spatial and temporal variation of the low-rank fields. The
first and second principal components, u(1) and u(2), well
approximate the optical flow fields by the forward translation
and rotation, respectively. The low-rank fields are synthesized
mainly by these two principal components with varying am-
plitudes and phases indicated by the complex numbers in the
first two columns v(1) and v(2) of V as shown in Fig. 5. For
example, |v(2)

n | and arg v
(2)
n indicate the scaling and rotation

of the optical flow field u(2) at time tn. The second compo-
nent u(2) increases when the road slope is varying or the road
is curving and the camera changes its direction. For example,
the camera direction vertically changes because of the vary-
ing slope between n ≈ 40 and 130 (decreasing slope) and
between n ≈ 140 and 200 (increasing slope). These changes
respectively induce the upward and downward optical flow
yielded by u(2).
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Fig. 5. Scaling (upper panel) and rotation (lower panel) of
the 1st and 2nd principal components with respect to the time
index n.

5. CONCLUDING REMARKS

We cast the separation of background and foreground optical
flow fields induced by egomotion and object motion as a re-
covery of low-rank and sparse matrices from a noisy complex-
valued matrix. Representing the two-dimensional optical flow
vectors by complex numbers, existing RPCA algorithms are
applicable to the optical flow fields.

Our method shows potential to extract the optical flow
fields for egomotion estimation and detection/localization of
moving objects in an unsupervised way without modeling the
scenes and objects. Further research should include the per-
formance evaluation of these tasks using the extracted fields.
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