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ABSTRACT

Motivated by the recent progresses in the use of deep learn-

ing techniques for acoustic speech recognition, we present in

this paper a visual deep bottleneck feature (DBNF) learning

scheme using a stacked auto-encoder combined with other

techniques. Experimental results show that our proposed deep

feature learning scheme yields approximately 24% relative

improvement for visual speech accuracy. To the best of our

knowledge, this is the first study which uses deep bottleneck

feature on visual speech recognition. Our work firstly shows

that the deep bottleneck visual feature is able to achieve a sig-

nificant accuracy improvement on visual speech recognition.

Index Terms— Visual speech recognition, stacked de-

noising auto-encoder, deep bottleneck feature.

1. INTRODUCTION

Although audio-visual speech recognition has achieved sig-

nificant improvements over audio-only speech recognition on

both clean and noisy environments [1, 2, 3], how to encode

speech related information in visual features is still a largely

undeveloped area. Given the encouraging performance of

deep learning techniques in acoustic speech recognition [4],

in this paper, we propose a deep visual feature learning

scheme that can replace existing hand-crafted visual features

and boost visual speech accuracy.

Deep learning techniques were first proposed by Hinton

et al. [5], who used the greedy, unsupervised, layer-wise pre-

training scheme to solve the training difficulty of multiple hid-

den layer neural networks. Hinton et al. used the restricted

Boltzmann machine (RBM) to model each layer of a deep

belief network (DBN). Later works showed that a similar pre-

training scheme can also be used by stacked auto-encoders [6]

and convolutional neural networks (CNN) to build the deep

neural network [7].

Although the speech recognition community has wit-

nessed some great successes in the utilisation of deep learning

techniques, the progress of visual speech recognition (VSR)

based on deep learning is still limited. Ngiam et al. [8] first

explored the possibility of applying deep networks on VSR.

In their work, however, the deep auto-encoder features were

used to train a support vector machine, which did not take

the dynamic characteristics of speech into account. Conse-

quently, their proposed feature learning scheme was not able

to be used on practical speech recognition tasks. Huang et al.

[9] trained a DBN to predict posterior probability of HMM

states given the observations, which was further used for

continuous speech recognition. However, the performance of

their proposed visual feature learned by deep learning tech-

niques did not show any improvements over the HMM/GMM

model. Although the hand-crafted visual features still play a

dominant role in VSR [3], deep learning techniques offer po-

tential opportunities for replacing these hand-crafted features

which will boost speech recognition accuracy.

In this paper, we propose an augmented deep bottleneck

feature (DBNF) extraction method for visual speech recogni-

tion. Although the DBNF was extensively evaluated for the

acoustic speech recognition in recent years [10, 11, 12, 13],

to the best of our knowledge, this method has never been ex-

plored in visual speech recognition. In this work, a DBNF

is first learned by a stacked auto-encoder and fine-tuned by

a feed-forward neural network. Then, this DBNF is concate-

nated with the DCT feature vector, and the dimension of this

concatenated feature vector is further reduced using LDA. Ex-

perimental results show that our proposed deep feature learn-

ing scheme is able to boost speech accuracy significantly.

The rest of this paper is organised as follows: Section 2

describes the proposed model for visual feature learning. The

system performance is evaluated in Section 3. Finally, the

paper is concluded in Section 4.

2. DEEP BOTTLENECK FEATURES

The proposed deep bottleneck visual feature extraction archi-

tecture is illustrated in Fig .1. The training process consists of

three stages. The first stage is a stacked auto-encoder which

is pre-trained by the video data in a layer-wise, unsupervised

manner. Then, this network is further fine-tuned by adding

a hidden layer and a classification layer to predict the class

labels (i.e., the states of the HMMs). Finally, the deep bottle-
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Fig. 1: Proposed augmented deep multimodal bottleneck visual feature extraction scheme.

neck feature vector is concatenated with discriminant cosine

transform (DCT) feature vector, followed by a linear discrim-

inant analysis (LDA) to decorrelate the feature and reduce the

feature dimension to 20.

In terms of feature extraction, two features are extracted:

DCT [14] and LBP-TOP [15]. For the DCT feature, 32 low-

frequency DCT coefficients are selected in a zig-zag left to

right scanning pattern, along with the 32 first and 32 second

temporal derivatives to capture the dynamic information of

utterances. For the LBP-TOP feature, we use a mouth region

subdivision scheme introduced in [15] to extract LBP-TOP

features. To be more specific, the mouth region is divided into

2 × 5 subregions and the 177 dimensional LBP-TOP feature

vector is extracted from each of these 10 subregions to form

a 1770 dimensional LBP-TOP feature vector.

Since each DCT feature element is a representation of the

entire mouth region at a particular frequency, DCT is consid-

ered as a global feature representation. On the other hand, the

LBP-TOP extracts local information within a small neigh-

bourhood from both the spatial and the temporal domains.

Hence, LBP-TOP is a local information representation [15].

Given the different characteristics of two appearance-based

visual features in the sense of information representation,

combining these two complementary information sources

should be able to boost visual speech accuracy. However,

compared with the 96 dimensional DCT feature, the 1770

dimensional LBP-TOP feature is not compact enough for the

HMMs to perform classification. In this paper, we propose a

deep feature learning based method to generate an augmented

feature which embeds both global and local information into

one single feature vector.

In the first stage of the stacked auto-encoder, it is a deep

neural network consisting of multiple auto-encoders in which

the output of each auto-encoder is wired to the input of the

successive auto-encoder. For each individual layer of the

stacked auto-encoder, we use a denoising auto-encoder [16]

to capture the structure of the video data. The input x is firstly

corrupted by using x̃ ∼ qD(x̃|x) to yield a corrupted input

x̃, where qD is a stochastic process which randomly sets a

fraction of elements of the clean input to zero.

With the corrupted input x̃, the latent representation y is

constructed through the encoder using the weights W and the

bias b of the hidden layer and non-linear activation function

σy:

y = σy(Wx̃+ b). (1)

For the decoding process, the reconstruction of the input z̃

is obtained by using Equation 1 with the transposed weight

matrix WT as the new weight and the bias of the visible layer

c.

The training of the denoising auto-encoder is carried out

using the back-propagation algorithm to minimize the loss

function L(x, z) between the clean input x and the recon-

struction z. For the first layer of the stacked auto-encoder, it

models the LBP-TOP feature, and the mean square error is

used for the loss function:

L(x, z) =
n∑

i

(xi − zi)
2, (2)

where i = {1, 2, .., n}, and n is the number of input samples.

Since the following layers of the stacked auto-encoder model

the probabilities of the hidden units of the corresponding pre-

vious layers, the cross-entropy error is used as a loss function:

L(x, z) =

n∑

i

[xi log zi + (1− xi) log(1 − zi)]. (3)

The stacked auto-encoder is trained in a greedy layer-wise

manner. To be specific, the first layer is first trained to min-

imize the error L(x, z) between the 1770-dimensional LBP

features and the reconstruction of the corrupted input z̃. Then,

the corrupted activations of the first hidden units are used as

the input to train the second layer. This process is repeated

until the subsequent layers are pre-trained.
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After the unsupervised pre-trained stage, we employ the

network fine-tuning strategy proposed in [12]. More specifi-

cally, a feed-forward neural network is constructed by adding

a hidden and a classification layer. In this network, the ini-

tial weights of the auto-encoder layers are obtained from the

pre-training stage, and two newly added layers are initialised

using random weights sampled uniformly. For the classifica-

tion layer, it uses a softmax function to predict the class (i.e.,

the state of the HMM), and this feed-forward neural network

is trained using the back-propagation algorithm.

At the third stage of the training process, the bottleneck

feature is then concatenated with the DCT features to form an

augmented feature (DBNF+DCT). LDA is used to decorrelate

the DBNF+DCT feature vector and to further reduce the fea-

ture dimension to 20. Finally, this augmented feature is fed

into an HMM recogniser.

3. EXPERIMENTS

3.1. Data Corpus

The data corpus used in our paper was collected through an

Australia wide research project called AusTalk [17, 18, 19].

It is a large 3D audio-visual database of spoken Australian

English, including isolated words, digit sequences, and sen-

tences, recorded at 15 different locations in all states and ter-

ritories of Australia. In the proposed work, only the digit se-

quence data subset is used. This set of 12 four-digit strings,

which are chosen randomly to simulate the PIN recognition

and telephone dialling tasks (see Table 1), is carefully de-

signed to ensure that each digit (0-9) occurs at least once in

each serial position.

Table 1: Digit sequences in the Big ASC data corpus. For the

digit ’0’, there are two possible pronunciations: ’zero’ (’z’)

and ’oh’ (’o’).

No. Content No. Content No. Content

01 z123 02 942o 03 6785

04 123z 05 7856 06 2o94

07 23z1 08 49o2 09 8567

10 3z12 11 5678 12 0429

3.2. Experimental Setup

With the use of the method detailed in [20], the videos which

capture the speakers’ lip movements can be obtained. Then,

the corresponding visual features can be extracted. In our

experiments, we partitioned the 125 speakers into 10 non-

overlapping subsets, and a 10-fold cross validation was em-

ployed. For each fold, 8 subsets of data are used for training

and 2 subsets are used for testing. We run our experiments in

a speaker-independent scenario; therefore the speakers in the

training and test subsets do not overlap.

In order to pre-train the stacked auto-encoder, a mini-

batch gradient descent with a batch size of 64 and a learning

rate of 0.01 is used. A random 20% of the input elements are

corrupted to zero by applying masking noise. Each layer of

the stacked auto-encoder has 1024 hidden neurons, and the

training of each layer is performed in 50 epochs.

After the pre-training of the stacked auto-encoder, another

1024-unit hidden layer and a classification layer are added.

The whole network is then fine-tuned using a mini-batch gra-

dient descent with a batch size of 256 and a learning rate of

0.05. Both pre-training and fine-tuning processes are carried

out on GPUs and implemented by the Theano toolkit [21].

With respect to the HMM model, we use 11 word models

with 30 states to model 11 digit pronunciations. Each HMM

state is modelled by 9-mixture GMMs with diagonal covari-

ance. In our experiment, the digit recognition task is treated as

a connected word speech recognition problem with a simple

syntax, i.e., any combination of digits and silence is allowed

in any order. The HMM is implemented by the HTK toolkit

[22].

3.3. Stacked Auto-Encoder Architecture

In order to confirm whether the deep feature learning architec-

ture is necessary and can learn a better information represen-

tation than the shallow feature learning techniques, we eval-

uate the features that are learned by different stacked auto-

encoders with various numbers of hidden layers. Meanwhile,

in order to confirm that the pre-training process can benefit the

visual feature learning, a stacked auto-encoder without unsu-

pervised pre-training is also evaluated.

Table 2: Evaluation on various stacked denoising auto-

encoder architectures.

Auto-Encoder Layers Pre-training Accuracy

1 (200) Yes 43.2%

2 (1024-200) Yes 55.7%

3 (1024-1024-200) Yes 57.3%
3 (1024-1024-200) No 49.9%

4 (1024-1024-1024-200) Yes 57.1%

Table 2 reports the visual speech accuracy using the fea-

tures learned by various stacked auto-encoder architectures.

From this table, one can observe that with an increase in the

number of hidden layers, a better feature representation can be

obtained. Meanwhile, one can also note that the use of pre-

training results in a better accuracy. However, the table also

shows that, with 3 hidden layers, increasing the hidden layers

is not able to further boost speech accuracy. Similar results

were also found in the acoustic speech recognition tasks [12].

Specifically, with a sufficiently large number of auto-encoder

layers, increasing the number of layers cannot further boost

the speech recognition accuracy. A possible explanation is
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Table 3: Visual speech recognition performance comparison

between our proposed DBNF and other methods.

Feature Reduction Dimension Accuracy

DCT MMI 60 52.3%
DCT mRMR 60 52.2%
DCT CMI 80 51.1%
DCT LDA 20 54.7%

LBP-TOP MMI 190 52.5%
LBP-TOP mRMR 190 53.0%
LBP-TOP CMI 310 37.0%

DBNF None 200 57.3%
DBNF LDA 40 63.3%

Augmented DBNF LDA 20 67.8%

that when the auto-encoder is large enough, adding new lay-

ers cannot increase the representative ability of the network.

Moreover, adding new layers requires a larger amount of data

to ensure the auto-encoder is sufficiently trained.

3.4. Performance of the Augmented Bottleneck Feature

Unlike the standard bottleneck feature learning process, the

learned bottleneck feature is concatenated with the DCT fea-

ture, and LDA is further used to decorrelate the feature vector

and to reduce the feature vector dimensionality. Hence, the

superiority of this feature extraction scheme needs to be eval-

uated.

As illustrated in Table 3, with the use of LDA, the ac-

curacy of the DBNF increases from 57.3% (200 dimensions)

to 63.3% (40 dimensions), which shows that LDA is able to

decorrelate the feature learned by the stacked auto-encoder

and reduce the feature dimension. Meanwhile, our proposed

method yields an accuracy of 67.8 % by concatenating the

DCT feature with the DBNF. It shows that our proposed aug-

mented DBNF is able to produce an even higher accuracy be-

cause it embeds both local and global information into one

single feature vector.

In order to demonstrate the superiority of our proposed

augmented DBNF, we list some other popular appearance-

based visual features in Table 3. Particularly, we compare

our proposed DBNF and augmented DBNF with two fea-

tures (DCT [14] and LBP-TOP [15]) and two feature reduc-

tion techniques, i.e., LDA [1] and mutual information feature

selector (MMI, mRMR, CMI) [14]. As shown in Table 3, the

visual speech accuracy of our proposed augmented DBNF,

which takes two complementary information representation

methods (i.e., local and global information) into account, out-

performs all the listed visual feature types and feature dimen-

sion reduction schemes.

More specifically, as shown in Table 3, besides the pro-

posed deep learning techniques in this work, DCT with LDA

(DCT+LDA) yields the highest accuracy (54.7%). In our

study, we also found that LDA failed to obtain a proper trans-

formation on the raw 1770-dimensional LBP-TOP feature

vectors, because modelling such a dimensional feature using

LDA requires that there are at least 1770 training samples

for each of the 308 classes (HMM states). Although the

data corpus we used is a relatively larger audio-visual con-

nected digit speech database, the amount of data is still not

large enough to perform the LDA reduction on the LBP-TOP

features. Compared with the mutual information feature se-

lectors (MMI, mRMR and CMI), using the proposed stacked

auto-encoders to learn features achieves a relative improve-

ment of 8% (57.3%), because the deep learning techniques

are able to make full use of the information in the LBP-TOP

feature, while the mutual information selectors only select

several relatively informative components from the original

LBP-TOP.

Since LDA is able to decorrelate the feature components

and reduce the feature dimension, we use LDA to further op-

timize the DBNF. After the optimization, the visual speech

accuracy further increases to 63.3%. The reason for the sig-

nificant accuracy increase are two fold: 1) Compared with

the 200-dimensional DBNF, the feature dimension is dramat-

ically reduced to 40 to avoid the curse of dimensionality. 2)

Since the units of the stacked auto-encoder are fully con-

nected between the units in adjacent layers, the components

of the DBNF are correlated. Employing the LDA is able to

decorrelate the components in the DBNF. In this work, we

also proposed an augmented DBNF, which is able to embed

both local (LBP-TOP) and global (DCT) information into a

compact feature vector, and our proposed augmented DBNF

yields 24% relative improvement, compared with DCT+LDA.

4. CONCLUSION

In this paper, we propose an augmented DBNF for visual

speech recognition. This augmented DBNF is first learned

with a stacked denoising auto-encoder, followed by a fine-

tune process using a feed forward neural network. The DBNF

is then augmented by concatenating the DCT feature vec-

tor, and LDA is applied to decorrelate the feature and reduce

the feature dimension. Experimental results show that our

proposed augmented DBNF significantly boosts speech ac-

curacy. Unlike the recently proposed works which solve the

lipreading problems as a classification problem [23, 24, 25,

26], we tackled this problem similar to a speaker-independent

acoustic speech recognition task, which needs to capture the

temporal dynamic of the data (e.g. by using HMMs). To the

best of our knowledge, this is the first work which explores

the use of the deep bottleneck feature on visual speech recog-

nition, and firstly show that the deep learned visual features

can achieve a significant improvement than the hand-crafted

features.
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