QUANTIZED FUZZY LBP FOR FACE RECOGNITION
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ABSTRACT a pattern-uniformity measure. Tan and Triggs proposed lo-
cal ternary pattern (LTP) [5] to handle the image noise in a

smooth image region. Subsequently, many LTP variants were
proposed in the literature [15, 23, 24].

Face recognition under large illumination variations isleh
lenging. Local binary pattern (LBP) is robust to illumiraati

valriationr; but s_ensitive_t_o _noise.bITuzzyt; LE}P (FLBP)_ paiyial Instead of hard-coding the pixel difference, a probability
Solves the nmse-sensmvny problem Dy incorporatingziuz measure is used in FLBP to represent the likelihood of a pixel
logic in the.represe.:nta.tlon of Iogal binary pattgrns. Thezfu difference to be encoded as “0” or “1”, e.g. a piecewisely
membersh|p. funcpon is determined by both sign anq MagNlineqy fuzzy membership function in [7, 14] and a Gaussian-
tude of the pixel difference. However, the magnitude islgasi like membership function in [25]. After fuzzfication, a smal

altered by noisg, hence could be unreliiable. Thus, we r?rqfnage variation will only alter the FLBP histogram slightly
pose to determine the fuzzy membership function by its Slglaompared with the LBP histogram. However, the membership

only. We name the proposed gpproach as Qggntized Fuzgafunction of the pixel difference, whose magnitude may be
LBP (QFLBP). On two challenging face recognition d""t"’lse'fschanged by noise easily. Thus, FLBP is still sensitive te@oi

itis shown more robust to noise, and demonstrates a superior Different from traditional FLBP that utilizes both sign and

performance to FLBP and many other LBP variants. magnitude of the pixel difference, we determine the fuzzy
Index Terms— Fuzzy Local Binary Pattern, Quantized membership function by the sign of the pixel difference only
Fuzzy LBP, Face Recognition Thus, even when a pixel difference is distorted by noise so
that its magnitude changes significantly, as long as its sign
does not change, its membership function remains the same.
Thus, the proposed approach is more robust to noise than
i s FLBP.
Face recognition has advanced significantly over last few To validate the noise-robustness of the proposed ap-
years [1-3]. However, face recognition under large iIIumi-proaCh we first compare it with LBP, FLBP and many other
hation \_/griations is Sti.” ghallenging. LBP is popular .in:(;.a LBP va:riants on the images of the éMU-PIE database [26]
rec_og_nltlon [3-6], as itis rpbust to monotonic '””T“'”f“'o injected with uniform noise. We further conduct the compari
yanatlons. LBP gnd its variants have alsp_be_en widely usegon experiments on a challenging database: the extended Yal
in other applications, e.g. texture classification [7, 8}; d dataset [27, 28]. On both datasets, the proposed approach
namic texture recognition [9-11], human detection [12, 13 onsistently démdnstratesasuperior’performance
and others [14-19]. '
However, the performance of LBP is limited by its noise-
sensitive problem [5, 6]. In [20], uniform LBP was proposed 2. THE PROPOSED APPROACH
to reduce the noise in LBP histogram. In [8,21, 22], informa-, .
tion in non-uniform patterns was also used for classificatio 2.1. Problem Analysis of LBP and FLBP

In dominant LBP, only the most frequently occurred patterng BP [20] encodes the pixel differeneg = i, — i, between

in a texture image were utilized [8]. Zhou et al. [21] and Fath a pixeli. and its neighboi,. Each LBP bit is obtained as:
et al. [22] proposed to extract information from non-unifor

1. INTRODUCTION

patterns based on the number of ones in the LBP codes and {1 if z, >0, )
p = .
This research is supported in part by the Singapore NatiBeakarch 0 if zp < 0.
Foundation under its International Research Centre @ BorgaFunding . . . . . .
Initiative and administered by the IDM Programme Office, angported in LBP is sensitive to Image noise. As shown in F'Q-_ 1,
part by the MoE Tier-1 grant M4011272.040. a small noise causes the pixel difference encoded differ-

978-1-4673-6997-8/15/$31.00 ©2015 IEEE 1503 ICASSP 2015



ently. Ideally, such a smooth region should be encoded asign and magnitude of the pixel difference. As the magnitude
“11111111". Due to noise, it is encoded as “01010111"can be easily altered by image noise, we propose to determine

instead. the membership function of a pixel difference using its sign
only. Formally, we define the following membership function

127128 127 01110 for the proposed quantized fuzzy LBP:

128 (128129 | Threshold p| 1 1

129]128]126 1[1]o 1 it 2z, > d,

w if z, <d,zp >0,

Fig. 1: lllustration of LBP encoding scheme for a smooth g1.a(zp) = 1—w ifz, <0,z >—d, )
image region with a small image noise. 0 if 2, < —d,

FLBP [7, 14, 25] partially solves this problem by intro-
ducing fuzzfication in the LBP encoding process. Instead of go,a(zp) =1 — g1,a(2p), (5)
hard-coding the pixel difference as in Eqn. (1), a fuzzy mem-
bership function is used to represent the probabilitg,ofo ~ Wherew € [0.5,1] is a pre-defined weight, which represents
be encoded as “0” or “1”. Several membership functions weréhe likelihood that,, to be encoded as 1 when the small pixel
proposed in literature [7, 14, 25]. Among these, piecewisel differencez,, is positive.

linear fuzzy membership function [7] is most common: We plot the membership functions of FLBP [7,14] and the
proposed QFLBP in Fig. 2. These two are clearly different.
0 if z, < —d, In traditional FLBP,f1 4(z,) gradually increases with, for a
Fra(z) =051+ %) if —d<z,<d, ) §mal| pixel difference. Any chapge i), Wi||. cause a change
i 1 if 2, > d, in f1,4(zp). In contrast, a small image variation will not alter

the membership function in the proposed QFLBP, as long as

it does not change the sign of the pixel difference. Thus, the
—1_ . 3 membership function of the proposed approach is invar@ant t

fo,a(2p) fra(zp), ®) the magnitude of the pixel difference, and purely deterhine

where f, 4(z,) and fo.4(z,) are the probabilities that pixel by its sign. It is less sensitive to image noise than FLBP.

differencez, should be encoded as “1” and “0”, respectively.

The parameted controls the amount of fuzzfication. 1r
The advantage of local binary pattern is its robustness t

illumination variations, as it only encodes the sign of thep

difference. However, it is sensitive to noise as a small@ois = 0.6¢

may alter the code. FLBP solves the noise-sensitivity gnobl 2 ol
by fuzzifying the pixel difference so that a small image vari ~

0.8}

ation only alters the FLBP histogram slightly. However, the 0.2} = = =FLBP
membership function defined in Eqn. (2) utilizes both mag- . |——QFLBP
nitude and sign of the pixel difference. As the magnitude ol -200 -100 100 200

a pixel difference is vulnerable to image noise, FLBP id stil
sensitive to image noise. In the next section, we introdoee t

proposed quantized FLBP, which is less sensitive to noise. F19- 22 Compare the membership functions of FLBP and pro-

posed QFLBP.

22. P d tized F LBP . . . .
roposed Quantized Fuzzy Even an image variation does change the sign of the pixel

The small pixel difference is most vulnerable to image noisedifference, it will not alter the bit from “0” to “1” or vice
whereas the large pixel difference is less affected by noiseversa, as LBP does. Instead, it only alters the probability
i.e. a small image noise unlikely changes the sign of theelargg; .4(z,) from w to 1 — w if the sign changes from positive
pixel difference. Thus, we treat them differently. Simljar to negative, or from — w to w if the sign changes from neg-
as in FLBP, we encode the large positive pixel difference astive to positive.
“1” and large negative pixel difference as “0”. We do not  The proposed approach could flexibly handle different
introduce fuzzfication to the large positive or negativeepix scenarios. If a small image variation may easily change the
differences, e.g. the probability to encode a large pasitivsign of pixel difference, e.g. in a smooth image region, we
pixel difference as “1” is 1. could assignw close to 0.5 so that it minimizes the cost of
The small pixel difference is tricky to handle. Traditional altering the sign. If an image variation is unlikely to chang
FLBPs [7,14,25] defined the membership function using botlthe sign, e.g. in a textured image region, we could assign a

1504



large weightw. If the noise level is low, we expect that the level asp = 0.1,0.15,0.2. The sample images are shown
sign of pixel difference is reliable, and hence a smals  in the first row of Fig. 3, and the photometrically normalized
sufficient to handle the small image noise. On the other handimages are shown in the second row.
we can handle large image noise by increasing

When constructing the QFLBP histogram, we calculate
the probabilities of all 256 patterns as:

7
P =[Jep! () + (1 - ) P(2), (6)
=0

where the LBP cod¢ = 22‘7:0 c;*2%; ¢; isi-th bit of the code;
Pl(z) andP?(z) are the probabilities that bitshould be en-
coded asl andO, respectively. The probabilities of all the
pixels within one patch are summed up to form the QFLBP
histogram of the patch.

Fig. 3: The first row shows the sample images of CMU-PIE
dataset with uniform noisg = 0,0.1,0.15,0.2. The second
3. EXPERIMENTAL RESULTS row shows the photometrically normalized images.

The proposed QFLBP is compared with LBP [20], FLBP [7,  The error rates of LBP, LTP, DLBP, FLBP and QFLBP are

14], and other recent LBP variants, e.g. LTP [5], dominangpown in Fig. 4. The proposed QFLBP consistently outper-
LBP (DLBP) [8], novel extended LBP (NELBP) [21] and forms other approaches for all thresholds wipes 0.1 and
noise tolerant LBP (NTLBP) [22]. LBP and its variants uti- p = 0.2, and for most thresholds when= 0.15. We can also

lize 8 neighbors at radius of 2 to the center pixel. We use thgpserve that the performance of QFLBP does not vary signif-

nearest-neighbor classifier with Chi-squared distance, icantly with threshold, especially fgr = 0.1 andp = 0.2.
2 (®ij — yig)?
X (xy)=) ~—————, 7
(y) LZJ: Tij + Yij Method p=01 | p=0.15| p=0.2
LBP [20] 5.22% 19.78% | 29.78%
wherex, y are the concatenated LBP feature vectors of twg TP [5] 1.42% 7.39% 18.66%
image samples;; ; andy; ; arej-th dimension of-th patch, DLBP [8] 2. 84% 13.21% | 21.49%
respectively. ) NELBP [21] 27.76% | 33.36% | 47.84%
We first conduct experiments on the CMU-PIE database [2QjT gp 122] 24.70% | 32.61% | 47.76%
with injected uniform noise to validate the noise-resistangp 7] 067% 2 84% 11.57%
property of proposed approach. Then, we conduct eXper'Proposed OFLBP 0.00% 0.52% 3.06%
i
1

ments on the challenging extended Yale B database [27, 28
The proposed approach demonstrates a superior performangg|e 1: The error rates under different noise settings for dit-
compared with others. In order to reduce the illuminationferent approaches on the CMU-PIE database.

variations, all the images are pre-processed similarly g5 i

We utilize the source codes provided by the authors of [5] to

perform this photometric normalization., The performance of different approaches under optimal

settings for different noise levels is summarized in Table 1
The proposed QFLBP achieves an error-free classification on
this challenging dataset even with a low-level image noise.
The CMU-PIE database consists of over 40000 facial image$/nen the noise level increases, the performance of other ap-
of 68 subjects, with large variations in pose, illuminatord ~ Proaches drops significantly, whereas the proposed QFLBP
facial expression. The illumination set is chosen for experStill preserves a very low error rate. For the most challeng-
iments, which contains 1407 images of 67 subjécach Ing settingp = 0.2, the proposed QFLBP reduces the error
subject has 21 images. We use only the image with fronttf FLBP from 11.57% to 3.06%. The proposed approach is
lighting (Image 1D 08) as the gallery set and the rest withShown more robust to noise than other approaches.

large illumination variations as the probe set. Beside fthe i

lumination variations, we inject additional uniform noiséo ~ 3.2. Experimental Results on the Extended Yale B Database
the images. We normalize the image i@ 1), and add uni-
form noise(—p/2,p/2) onto the image. We vary the noise

3.1. Experimental Results on the CMU-PIE Database

The extended Yale B database [27, 28] consists of images of
38 subjects under 9 poses and 64 illumination conditions. We
1The images of Subject 39 are not complete and hence excluded. use the same database partition as in [5]. The images with
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Fig. 4: The error rate vs. threshold for different noise levels o CMU-PIE database. The proposed QFLBP consistently
outperforms others.

neutral light source (“A+000E+00") are used as the gallety s
and all other frontal images are used as the probe set. In tota

o misimimimim s === e === = | BP
we have 2414 images of 38 subjects. The database contain: AN e e m e e mh e e —#—=LTP
large illumination variations. Some sample images are show - I?II__BBIS
in Fig. 5. Even after photometric normalization, the images 35 &~ OFLBP
still contain a large amount of noise. § al
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Fig. 6: Error rates for different approaches at different thresh-
olds on the extended Yale B database.

Fig. 5. Sample images and photometrically normalized im-

ages of the extended Yale B database. optimal thresholds is summarized in Table 2. The lowesterro

rate is only 1.13% for the proposed QFLBP.

Method Error Rate

LBP [20] 3.40% 4. CONCLUSION

LTP [5] 2.60%

DLBP [8] 4.34% In this paper, we address the challenge of improving the ro-
NELBP [21] 20.38% bustness to image noise. LBP is popular in face recogniton a
NTLBP [22] 20.97% it is robust to illumination variations. However, it is séh&
FLBP [7] 1.55% to noise. FLBP partially solves this problem by introducing
Proposed QFLBP 1.13% fuzzfication to LBP encoding process. However, its mem-

bership function utilizes both sign and magnitude of a pixel

Table 2: The lowest error rate at optimal threshold for differ- difference. As the magnitude is easily altered by noise, we
ent approaches on the extended Yale B database. propose to determine the membership function using the sign
only. The proposed approach is validated on two challeng-
The error rates for different approaches at different tiies ing face databases, and shown more robust to noise than LBP,
olds are shown in Fig. 6. The proposed QFLBP consistenthfrLBP and other recent LBP variants. The performance gain
outperforms others, and its performance does not vary sigs more significant when the noise level is high. Furthermore
nificantly for different thresholds. The lowest error ratétee  the performance of QFLBP is insensitive to the threshold.
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