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ABSTRACT

In object recognition, Fisher vector (FV) representat®one of the
state-of-the-art image representations ways at the egperdense,
high dimensional features and increased computation tdngim-
plification of FV is attractive, so we propose Sparse Fisketar (S-
FV). By incorporating locality strategy, we can acceletatFisher
coding step in image categorization which is implementednfia
collective of local descriptors. Combining with poolingegt we
explore the relationship between coding step and poolieg &b
give a theoretical explanation about SFV. Experiments anclhe
mark datasets have shown that SFV leads to a speedup of Iseve
fold of magnitude compares with FV, while maintaining théegm-
rization performance. In addition, we demonstrate how SF& p
serves the consistence in representation of similar l@ezdlfes.

Index Terms— Sparse Fisher vector, locality strategy, General-

ized Max Pooling, image categorization

1. INTRODUCTION

The Fisher vector approach [1-6] is an extension of the popul

Coding (LSC) [13], Laplacain Sparse Coding [14], Local Gboate
Coding [15], local sparse coding [16]. Also this localityeperving
method has been used in pooling step [17]. This localitypvdduce

an early cut € effect to remove the unreliable longer distances. Pre-
vious work has shown thefectiveness of preserving configuration
space locality during coding, so that similar inputs leadsitailar
codes [14]. Also we can view them as a trick whose computation
al cost would be prohibitive with standard coding. Becaukthae
coding codicients can be regarded as the probability density to de-
scribe the feature which can be represented by histogranstuerfi
vector. In this paper, we will introduce the LLC, LSC and SFym

rSTobabiIistic perspective and reveal the relationshigsvéen LLC,

LSC and SFV, and this part will be discussed in section 4.

For the pooling step in image categorization, Naila Murrb8] [
et al. tried to generalize max pooling (GMP) to Fisher vedtpr
constructing object function with loss term. Based on thiscsure,
we reformulate the sparse Fisher vector which is the origshdt
vector combined with locality strategy.

A notable previous idea which is similar to our work is propads
in [3] with "posterior thresholding”. But [3] only regardedis as an
accelerating trick, and failed to provide the detailed tké&oal proof

Bag-Of-Words (BOW) model by encoding for codeword the meanand the &ectiveness of the proposed method are not explained. Our

and variance of local descriptors. It consists of two stépsncod-
ing step, encoding the descriptors into dense and high+diioeal
features codes; and (ii) pooling step, pooling the codesantector.
With several improvements [2, 3], Fisher vector has beerpbiige
most dfective ways for image categorization.

The success of FV representation is ascribed to its highrdime
sionality, but FV representation alsoffars high computation cost
when compared to BOW model [3], especially for large-scalage
retrieval and object detection. For specific tasks, sevenaplified
[4, 7, 8] and extended [2, 5, 6, 9] versions of Fisher codingehe
merged. In [4], Jegou et al. proposed the VLAD representatio
which each local descriptor is assigned to the nearest lwsoil,

then the diferences between codewords and corresponding descrié—

tor are accumulated. In [5], Florent Perronnin et al. corsped the
high-dimensional Fisher vectors through Local Sensitiestting.
Recently, Dan Oneata et al. [7] presented approximationstmal-

izations in Fisher vector. In [8], authors realized a fastloarea
independent representation by representing the pictuspase in-
tegral images. In this paper, we combine the locality sgraiato

Fisher vector to reduce the time consumption in featurengpsiiep.

Locality strategy has been used in Linear Embedding and spec

tral clustering i.e. Local Linear Embedding [10] and locpéstral
clustering [11]. Inspired by this strategy, many localizedtling

ways or nearest search algorithms have emerged in BOW, for e

ample, Locality-constrained Linear Coding (LLC) [12], ladSoft
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paper provides the detailed explanation of the scheme goidiment
a experimental evaluation on image categorization task.

2. GENERALIZED MAX POOLING REVISIT

Fisher vector is essentially the sum pooling of encoded S#aF
tures. It should be noted that the sum-pooled representitimore
influenced by frequent descriptors in one image. While maodgx
representation only considers the greatest response,hanefdre
immune to this &ect, but it does not apply to aggregation-based en-
coding such as FV representation. To alleviate the probl§hg]
roposed the generalized max pooling method that mimicsi¢he
irable properties of max pooling. They dengigthe code vec-
tor of each feature, and™* the GMP vector. GMP demands that
#l¢M = Const, which indicates thai™* is equally similar to fre-
quent and rare features. In the BOF case, GMP is strictlyvatgrit

to max pooling [18]. GMP can be formalized in two ways. Thetfirs
is the primal formulation:

@

¢9™ = arg min||®" ¢ - 1N||2
s

which directly gives the result of pooling®™, wherely is the N-

limensional vector of all ones. The second is the dual foatinn:

@

a, = argmin|[®T da - 1y + Alldal?
a
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which gives the weight of each featug®™ is the result of weighted
sum pooling.

3. SPARSE FISHER VECTOR THEORY

Let X = {Xg,....xn} be a set oN local descriptors extracted from an
image. We denotkl the number of Gaussian Mixture Model(GMM)

In LLC [12], weighted L2-norm constraint is used to assuw th
the local atoms are preserved, which inspires us to use tasireg-
ularity to leverage the sparsity of,, let amsry denote the SFV rep-
resentation,

amsty = arg min||Kam — x| + 2[1d™ © a3 (10)

whered gives diferent constraints to the individual itemsagf. Spe-

clusters, and the dimension of SIFT descriptors after using PCA. cially,

Clearly. According to Section 2, the Fisher vector represém ¢
should be equally similar to each Fisher vector code, wrsctie-
fined as:

o =1y (3)

where® is the code matrix, of which each row represents a Fisher

vector code corresponding to the descriptpr
G1(x1) Gw (1)

O= (4)

G1 (%) Gwm (Xn)
whereGn(x,) is the sub-vector of clusten of the Fisher vector code
corresponding tet,.

In [1], the normalization of the Fisher information matrakes
a diagonal form, which assumes the sub-vectors are indepéeod
each other. Therefore it is natural to divide Eg. 3 iMcubtasks.
We denote byb,, them-th column of®, which is the code matrix in
them-th subtask:

Gm (Xl)

DOy = (5)

Gm (XN)
And ® = (®;---Dy). If each subtask is fulfilled as follows, the
whole task likes Eq. 3 will be fulfilled as:
Drdm = 1y ®)
The objective function of thetth subtask in the primal formu-
lation is:

Pmgmp = g min“q)-lm-‘ﬁm - 1N|| +4 ||¢m||g (7)

Clearly the primal formulation does not have the sparsgéfiect,
so we turn to the dual formulation. According to Section 2,dee
note byan, the code weight so thabam = ¢, which means that
¢m is the pooling result of code matri®y, with weight o, [17].
am is consistent with the idea of Sparse Fisher vector becaagse i
determine whether a Fisher vector code is valid in the finalgen
representation.

The objective function of then-th task in the dual formulation
is:

®)

For convenience, we substitutefor ®T @y, The analytical solution
to the dual formulation is:

mgmp = arg min|| & Omarm — 1N||§ + || D2

amgmp = (K + 1)1y

©)

The analytical solution indicates that we can leverageri&idual

dn = 1 ifj e M
i oo otherwise
N denotes the firdt maximum posterior ofr+th cluster. The ana-
lytical solution is:

(11)

amstv = (KTK + adiag? (d)) 'Ky (12)
When 2 approaches infinityKTK will be comparatively negligible,
and the solution can be written as:
. -1
amery = (Adiag? (d)) Kl (13)
Eq. 13 sparsifies the items i, that are heavily constrained by
d, but the weights of the unsparsified descriptors are deteunby
K1y, which is time-costly. Therefore, we make a further simgdifi
tion. K is the kernel matrix of patch-to-patch similarities. Clgar
amstv Only depends oiK: when a feature shows little similarity with
the other features, the corresponding weightill be greater. Be-
cause the Fisher vector codes are all normalized, the déhgems
of K are all ones. If we ignore the non-diagonal itemsKo#vhich
means that the Fisher vector codes are orthogonal, Eq. 1k3tgoe
. -1

sty = (Adiag? (d)) "1y

Becausel will be eliminated by normalization, the individual
item of am sty Can be written as:

()
a/msfv - {

whereajTLSfV is thej-th term ofamsrv, andd" is thej-th term ofd™. As
Ddmam, Sparser, makesd,, be sparsified, i.e., Sparse Fisher vector.

For A = 0, we haveemsry = 1n/4, which corresponds to the
original Fisher vector. Thereforgd,does not only play a role in reg-
ularization, but also realize a smooth transition betwéersblution
to original Fisher vectorA = 0) and Sparse Fisher vector © ).

1 dr=1

0 d'"=o0 (14)
]

4. EXPERIMENT EVALUATIONS

To verify the dfectiveness of Sparse Fisher vector, we validate the
proposed approach on image category task. Firstly, we ithesitre
image classification datasets and experimental setup. égiexen-
tally compare the Sparse Fisher vector against the carldfistzer
vector for two large data sets: Caltech-101 by Fei-Fei ef29] and

the Pascal VOC sets of 2007 [20] .

4.1. Experimental setup

We compute all SIFT descriptors on overlapping32 pixels patch-
es with the step size of 4 pixels. We reduce their dimensignial

items ofany, which are the weights of the Fisher vector codes in the64 dimensions with PCA, so as to better fit the diagonal canag

m-th subtasks. If the weight is zero, then the correspondesgidp-
tor makes no contributions in the pooling. In other words, rthth
component of the Fisher Vector code is sparsified, whoseisdda
FV sparsity encoding in [3].
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matrix assumption.

EM algorithm is employed to learn the parameters of the GMM
and the cluster number ranges from 64 to 256. By default, iirdf
vector, we calculate the gradient with respect to mean amtatd



Table 1: Experiment results on PASCAL VOC 2007

Coding ways | Feature Dims| Accuracy(%) | Time perimage(s)
FV(M=32) 4096 49.75 3.14
FV(M=64) 8192 52.48 5.43

FV(M=128) 16384 55.18 9.73

FV(M=256) 32768 58.42 16.97

SFV(M=32) 4096 49.76 1.04

SFV(M=64) 8192 52.49 1.81

SFV(M=128) 16384 55.18 2.39

SFV(M=256) 32768 58.25 3.72

BOW(M=8192) 8192 39.60 2.45
FV(M=256)[43] 32768 58.3 -

deviation. And for the Sparse Fisher vector we set the neididod ~ the increase in codebook size, th&elience of time consuming be-
ask = 5. We streamline the standard experimental setting and entween these two coding ways is increasing. For example, vitren
ploy linear SVM. Itis worth mentioning that the computingfform  codebook size is 256, coding time per image in FV is 10.69 dewh
in our experiments is Intel Core Duo (4G RAM), so the results a for SFV is 1.98 s which is nearly 5 times as fast as FV.

slightly different with origin paper in computation time. We use the

origin Fisher vector [1, 2] as the baseline and also the 8fasher ) .

vector is improved based on origin Fisher vector. 4.4. Experiment analysis

4.4.1. Computation cost analysis

4.2. PASCAL VOC 2007

. . To further show the advantage of SFV in computation cost, we
The Pascal VOC 2007 database contains 9,963 images of 20 clagiemonstrate the average coding time per image with the dize o
es. We use the standard protocol which consists in trainmthe  gehook and analyze the computation complexity.
provided trainval set and testing on the test set and we s@@W
model as the baseline. The classification results are cadpar
Table 1, wheréM denotes the number of clusters in GMM. We com-
pared three sections infiBrent coding ways, including feature di-
mensions, accuracy and coding time per image.

For the same feature dimension, for example 8192, the FV & T io T
achieves higher accuracy than BOW. This result shows tleaFth e H
is more discriminative than BOW with the double time cost.t Bu " . 3
for SFV, when the cluster number of Gaussian mixture distigin- g e — ¢
s(GMM) is 64, we can obtain a comparable accuracy with FV but =, <, e
much faster image coding. This result is in accordance with t ° Teseectcodmeok * eseotcodmock
conditions of 32, 128 and 256 clusters number.

(a) PASCAL VOC 2007 (b) Caltech 101

4.3. Caltech-101 Fig. 1: Comparison between theoretical and empirical resuleciBl
Caltech 101 dataset consists of 9144 images of 102 clagsearii- line indicate the origin FV and the red one indicate the SFV.

mals, flower and so on. Following the standard experimesttihg,
we use 30 images per class for training while leaving the neimz
for test. Other experimental setting agrees with expertnsetup
above. Classification results are compared in Table 2. Tabl®ws

Fig.1(a) and Fig. 1(b) show the average coding time per image
as a function of the codebooks size on datasets above. Asheas t
case on both datasets, SFV consistently outperforms thenB\Vhe
computation time dference increase with the codebooks size.

Considering theD dims of features an# clusters mentioned
above, we can estimate the computation complexity. There-ar

Table 22 Experiment results on Caltech-101

Coding ways | Accuracy(%) | Time per image(s) wo sub-steps in FV encoding steps: the first sub-step is letileg
FV(M=32) 61.00 1.46 the posterior probability and the second sub-step is caticg the
FV(M=64) 65.09 2.33 derivation on the GMM. The computation complexity of theftfirs
FV(M=128) 67.85 4.50 step isO[3MD] and 3 represents the number of mathematical oper-
FV(M=256) 70.79 10.69 ations(e.qg., floating point multiplications) which is safoeFV and
SFV(M=32) 61.05 0.81 SFV. The computation complexity of the second ste[{8+5)MD]
SFV(M=64) 65.03 0.96 andO|[(3 + 5)kD] respectively. AsM > k, so the total time of SFV
SFV(M=128) 67.82 1.30 is much less than FV and the timeférence increases wit which
SFV(M=256) 70.75 1.98 is consist with experiment results. What's more, becausetm-

putation complexity of second step in SFV is independerntef&ize
the similar result as Table 1. Under the same size of codel®®¥  of codebooks, the holistic computation complexity alm@shains
runs more quickly than FV with a comparable accuracy. Andvwit unchanged with the size increasing.
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4.4.2. Smilarity correspondence between SFT and Sparse Fisher
vector
d

One implicit contribution of our work is that SFV better peeges o

similarity. To demonstrate this, 200 SIFT features from BAS
VOC 2007 are randomly selected. We calculate the pair-witge s
ilarity by using cosine measure. The similarity correspomm is
shown in Fig. 2. Fig. 2 indicates an obvious linear trend ef¢im-
ilarity between SFV against the similarity between SIFTtdess,
while FV does not. The comparison confirmed that tffeative-
ness of preserving configuration space locality duringrmgdivhich

makes similar inputs correspond to similar codes [14, 21]. c

0
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b
c
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si

06 07 08 08 1
imiarty botween ST

(b) SFV
Ci

Also we need to notice that all dimensions of soft coding P33,

are independent of each other. In Fisher coding, the reamong

ifferent dimensions are represented by GMM. The object fumctio
f SFV can be represented as:

PTP(X6)

maxy(m) = P(mx,6) = SPTIPn(0)

o 1(m) (18)

st lllo =k

wherel is a binary vector.

So when we execute the localization operation in Eq. 16, we
alculate the codewords which belong to kheearest neighborhood
f the feature. This can be regarded as the soft maximum dikéhe
hood of conditional probability. This is also true for LL@odel.

But in SFV, when we execute the early ctif operation, the prior of
the codeword is incorporated. So we calculate the codevwehitsh

elong to thek-nearest neighborhood of the feature as Eq. 15. This
an be regarded as a soft maximum of the posterior probabilit

5. CONCLUSION

In this paper, we have introduced a 'localized’ Fisher vectdled
Sparse Fisher vector. Based on GMP, we sparsified the Fishtarv

ode matrix by adding local regular term. These ways allffigient

Fig. 2: Experiment result on Pascal VOC 2007. The similarity cor-image categorization without undermining its performaneeever-

respondence relationship between the FV(left) or SFV{yighd the
SIFT feature. A linear trend can be found in SFV.

al public datasets and coding outputs preserve the sityilamong
input features.

Fisher vector origins from the natural gradient in [24], paSe

Fisher vector can be seen as partial gradient descent. iz,

p
S

u

4.5. Discussion about SFV

In Fisher vector, local features are described by deviatiom a

robabilistic perspective, Sparse Fisher vector can bardeg as a
oft maximum of the posterior probability. Since GMP coesithe
niqueness of features and weight them according to unggsemve

GMM. The probability representation of a feature by GMM can b Will combine it in our future work.

represented as:

M
P(4E) = > wmPm (X6)
m=1 (15)
exp(=3 (X = ptm)"Z (X = pim))
(2m)P/2 [Em[M?

Pm (X6) =

where wn, denotes the prior of the codeword apg (x|0) reflects

the probability of featurex belongs to them-th cluster. So we can
regard the feature coding déieient as the probability of a feature
belonging to the codebook. We notice that no matter in LLC],[12
or LSC [13], codewords in codebook are independent and trere
no priors on them or we can regard the priors as equal. For LSC,
Eq.15 can be rewritten as:

M
P(XB) = ) Pm(xB)
; (16)
P (XIB) = exp(lIx — bull3 /)

Eq.16 can be seen as the probability of input feakupelonging to
them-th codeword [22], wher® denotes the number of codewords
in codebook. So the object function of LSC can be represeaged

M
P(x|B) = Pn(XB)o 1
maxP(xB) ; (B @ I(m) an
st il =k

wherel is a binary vector.
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