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ABSTRACT

Repetitive patterns exist widely in real world images, and
matching images with plenty of repetitive patterns remains
a challenging task. We present in this paper a novel fea-
ture matching algorithm of images with notably repetitive pat-
terns, in which a reliable initial correspondence set is estab-
lished, purified and propagated using a voting strategy, in-
corporating a local geometrical constraint. Experiments have
demonstrated that the proposed algorithm outperforms state-
of-the-art feature matching methods on matching images with
plenty of repetitive patterns.

Index Terms— Feature correspondence, repetitive pat-
tern

1. INTRODUCTION

Feature point matching is a core problem in many computer
vision tasks, such as image registration [1], 3D reconstruc-
tion [2], structure from motion [3] and object recognition [4].
A rich and reliable feature matching result greatly contributes
to improve the performance of these tasks. Many state-of-the-
art matching methods are based on local descriptors. How-
ever, repetitive patterns in images, which widely exist in natu-
ral and artificial scenes, make the local descriptors ambiguous
and therefore bring difficulties to feature matching methods.

One common approach to solve this problem is to reject
the match that is probable to be disturbed by ambiguous de-
scriptors [4]. However, this approach may reject potential cor-
rect matches in the regions of repetitive patterns, leading to a
low number of total matches. Another approach is to take a
larger candidate matches set into consideration and refine the
match set by various geometrical considerations or by the op-
timization of the graph matching model [5, 6, 7]. However,
the cluster of incorrect matches which are mutually geometri-
cally consensus cannot be rejected by these methods because
of the locality of geometric constraints.

Some researches have been taken on repeated pattern de-
tection and matching. Ha et al.proposed to detect features of
repetitive patterns by clustering, and validate the homography
computed from matches of salient features by repetitive pat-
terns in RANSAC iteration [8]. Fan et al.proposed to regard

Fig. 1. An illustration of the proposed method. The left im-
age shows the initial matching result. The matching result
of non-ambiguous keypoints (shown as red circles) is deter-
mined (shown as green solid lines), however, the ambiguous
keypoints (shown as black crosses) may be matched to several
candidates rather than a single point (shown as dashed lines),
in which one of them are correct (shown as gree dashed lines).
The right image shows the final matching result, in which
all ambiguities are eliminated by correspondence purification
and propagation

a pair of keypoints as a unit, describe them, match them and
parse the matching result into point correspondence under the
low distortion constraint [9]. However, the low distortion con-
straint are sensitive to simple geometric transformations such
as scale changing or general affine transformation, therefore
the constraint will mislead the matching in the situation of
these geometric transformation.

In this paper, we propose a novel feature matching frame-
work mainly focused on matching images with repeated pat-
terns. In this framework, features outside the repetitive re-
gions are firstly selected and matched, then the matching re-
sults are propagated to other features (see Fig. 1). The advan-
tages of our algorithm are summarized as follows. Firstly, the
discrimination of ambiguous and not ambiguous (salient) fea-
ture points makes the initial match richer and robuster. Sec-
ondly, incorporating appearance into matching propagation
can decrease the local indistinctness of geometrical informa-
tion.

The remainder of this paper is organized as follows. The
problem is defined in Section 2. Then the proposed method
is elaborated in Section 3. Experimentations are reported in
Section 4, and Section 5 concludes this paper.
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2. PROBLEM DEFINITION

In this paper, we suppose that the features are detected along
with a elliptical region and a dominant orientation. Many
state-of-art feature detectors such as Hessian-Affine extrac-
tors [10] or MSER extractors [11] are of this type.

We denote the keypoints extracted from two images as
V P = {P1, P2, ..., Pn} and V Q = {Q1, Q2, ..., Qm}. For
each feature vi ∈ V P ∪ V Q, we denote its region as Si and
descriptor as di. Our goal is to find as many as possible cor-
rect matches in V P × V Q.

2.1. Geometry of affine feature regions

Because every feature region is elliptical, its shape and dom-
inant orientation can be represented by a 3 × 3 affine trans-
formation matrix Ti, which transform the ellipse into the nor-
malized patch(a round patch with unit radius and dominant
orientation at y-axis). Generally the Ti has the following form

Ti =

[
Ai xi

0 1

]
, (1)

where xi is the coordinate of the feature region center in the
image and Ai is the 2×2 matrix which represent the transfor-
mation from the ellipse feature region (centered at the origin
point) to the normalized patch.

2.2. Geometrical compatibility valuation

In the proposed approach, measuring the geometrical compat-
ibility of a pair of matches is usually needed. In practise we
use the Standard Transfer Error (STE) [5] to measure it. Let
Pi, Pj ∈ V P and Qi, Qj ∈ V Q, the STE are defined as the
following:

STE((Pi, Qi), (Pj , Qj)) =
1

4
(dPiQi|PjQj

+ dPjQj |PiQi

+dQiPi|QjPj
+ dQjPj |QiPi

),

(2)

where
dab|cd = ∥xd − ρ(T−1

b Ta

[xc

1

]
)∥, (3)

where ρ means the conversion from the homogeneous coordi-
nates to 2-D coordinates.

2.3. Correspondence purification

Formally, we denote the match set before purification as M =
{(P1, Qπ(1)), (P2, Qπ(2)), . . . , (Pk, Qπ(k))}. We score each
match by its STE with neighbour matches and eliminate the
low-score matches.

The pseudo code of this part is shown in Alg. 1.

Algorithm 1 Correspondence Purification
Require: A set of correspondence M =
{(Pi1 , Qπ(i1)), (Pi2 , Qπ(i2)), . . . , (Pik , Qπ(ik))}

Ensure: C, a subset of M which includes correct correspon-
dences.

1: for all (Pi, Qπ(i)) ∈M do
2: for all Pj ∈ k-NN(Pi; {Pi1 , Pi2 , . . . , Pik}) do
3: Eij ← STE((Pi, Qπ(i)), (Pj , Qπ(j)))
4: end for
5: Select A such that it contains [k/2] smallest elements

in {Eij∥1 ≤ j ≤ k}
6: Score(i):=mean(A);
7: end for
8: C ← Select the best 70% matches

3. PROPOSED METHOD

The proposed method is divided into the following steps:
initial matching, correspondence purification and correspon-
dence propagation. These steps are elaborated in the follow-
ing subsections. The flow chart of the algorithm is shown in
Fig. 3.

3.1. Initial matching

Firstly we partition the feature point set into two sets: We
define the distance between the two descriptor vectors di and
dj as θij = arccos di · dj . For each feature Pi ∈ V P We find
the nearest descriptor in V Q which has the least angle with
Pi, denoted as ni = argminj θij .

All the feature descriptors whose distance with vi is less
than ρθi,ni are selected as its candidate matching set.

Ai = {vj : di · dj < r cos θi,ni}, (4)

where r is an preset ratio.
We eliminate the keypoints whose nearest neighbor dis-

tance is too large, and the ambiguity of a feature point is de-
termined by the size of its candidate set. The salient feature
point set is defined as

SP = {vi||Ai| = 1andθi,ni < t1}, (5)

The initial matches is set as M = {(Pi, Qni)|vi ∈ SP }

3.2. Correspondence propagation

After initial matching, we get the initial match set M =
{(Pi1 , Qπ(i1)), (Pi2 , Qπ(i2)), . . . , (Pik , Qπ(ik))} associating
with the keypoints in the two salient keypoint sets. We divide
the whole image into several Voronoi regions and propagate
the match to the keypoints in the same region using the same
reference matches. To fully present the algorithm, we present
the pseudo code of this part in Algorithm 2.
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Fig. 2. The flow chart
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Fig. 3. Precision recall curve in CAS dataset

In the algorithm,

v(Qi) = dPj · dQi + exp(−STE((Pni, Qπ(ni)), (Pj , Qi))/σ),

(6)

in which the average is performed on all possible assignment
of Pni which satisfies the condition that Qi ∈ kNN(Qji;V

Q
N ).

4. EXPERIMENTS

In our experiments, Hessian-Affine feature regions with SIFT
descriptor is used for keypoint extraction and description. We
have systematically compared our method with several state-
of-the-art feature matching methods, including Progressive
Graph Matching [5], NNDR [4], Fan’s method [9], Pairwise
Matching [7].

4.1. Evaluation criterion

To judge the correctness of each match, we use the criterion
proposed by Mikolajczyk and Schmid [12]. The definition of
recall and precision are as follows:

recall =
#correct matches

#correspondences
,

1− precision =
#false matches

#allmatches
,

(7)

where # means the cardinal of a set, and correspondences
is the total number of ground truth matches between two im-
ages.

4.2. Results on planar scenes

We test all methods on the 4 image pairs referenced in the arti-
cle [9]. This database is constructed by Chinese Academy of
Science. In each pair, the ”Left” image can be transformed
into the ”Right” one under a homography. The precision-
recall curve of all methods on the 4 image pairs are shown
in Fig. 3. From the precision-recall curves it can be seen
that our method performs well among all method taken into
consideration, especially in the high-precision range.

4.3. Results on real building image pairs

We select some image pairs of real buildings in the ZuBuD
dataset to test the performance of our method. Fig. 4 shows
the matching result of several methods in comparison in one
of the image pairs. In order to evaluate the performance of
all methods, for each method we counted the number of cor-
rect matches in 150 best-scored matches. The ratio of correct
matches are shown under the figures. It can be observed that
our method gives more accurate correspondences.
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Fig. 4. Feature matching results of different algorithm on a
real building image pair. (a)Our method (140/150); (b)Fan’s
method (132/150); (c)PGM (144/150); (d)Pairwise Matching
(67/150); (e)NNDR (33/150)

Algorithm 2 Correspondence Propagation
Require: feature sets of two images, V P =
{P1, P2, ..., Pn}, V Q = {Q1, Q2, ..., Qm}
M = {(Pi1 , Qπ(i1)), (Pi2 , Qπ(i2)), . . . , (Pik , Qπ(ik))}

Ensure: C, A set of feature correspondence including some
features that are in V P but not in M

1: C ← ∅
2: V P

M ← {Pi1 , Pi2 , . . . , Pik}, V
Q
M ←

{Qπ(i1), Qπ(i2), . . . , Qπ(ik)}
3: V P

N ← V P − V P
M , V Q

N ← V Q − V Q
M

4: G← Delaunay triangle net generated by V P
M

5: for all Pj ∈ V P
N do

6: Pn = argminPi∈V P
M
∥Pi − Pj∥2;

7: DN(Pn)← neighbors of Pn in graph G
8: for all Pni ∈ DN(Pn) do
9: Hni = T−1

Qπ(ni)
TPni ;

10: Qji = Hni(Pj)
11: end for
12: NQ = ∪kNN(Qji;V

Q
N );

13: for all Qi ∈ NQ do
14: Compute v(Qi) by Eq. 6
15: end for
16: Qim = argmaxQi∈NQ

17: if v(Qim) > th then
18: C ← C ∪ {(Pj , Qjm)}
19: end if
20: end for

5. CONCLUSION

In feature point matching, repetitive patterns often disturb the
matching result. A novel feature matching method is pro-
posed for matching images with plenty of repetitive patterns.
We start by establishing reliable correspondences based on
salient features. Then the correspondence set is iteratively
refined and enriched to increase its precision. Experiments
demonstrated that the proposed method outperforms several
state-of-the-art methods.
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