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ABSTRACT

Critical to accurate reconstruction of sparse signals from low-
dimensional Poisson observations is the solution of nonlinear op-
timization problems that promote sparse solutions. Theoretically,
non-convex `p-norm minimization (0 ≤ p < 1) would lead to
more accurate reconstruction than the convex `1-norm relaxation
commonly used in sparse signal recovery. In this paper, we pro-
pose an extension to the existing SPIRAL-`1 algorithm based on
the Generalized Soft-Thersholding (GST) function to better recover
signals with mostly nonzero entries from Poisson observations. This
approach is based on iteratively minimizing a sequence of sepa-
rable subproblems of the nonnegatively constrained, `p-penalized
negative Poisson log-likelihood objective function using the GST
function. We demonstrate the effectiveness of the proposed method,
called SPIRAL-`p, through numerical experiments.

Index Terms— Nonconvex optimization, low-photon imaging,
Poisson noise, generalized soft-thersholding, `p-norm

1. INTRODUCTION

The Poisson process model [1] has been widely used in a variety of
imaging applications, including atmospherically degraded and low-
light imaging [2] and low photon medical imaging such as Positron
Emission Tomography (PET), Single Photon Emission Computed
Tomography (SPECT), and Confocal Microscopy [3]. When the ar-
rival of photons is modeled by the Poisson process model, the ob-
served data y is said to have a Poisson distribution with mean detec-
tor photon intensity Af∗:

y ∼ Poisson(Af∗),

where y ∈ Zm
+ is a vector of observed photon counts, f∗ ∈ Rn

+ is the
vector of true signal intensity, and A ∈ Rm×n

+ is the system matrix
that linearly projects the true signal to the detector photon intensity.
Since the Poisson parameter is not known, the maximum likelihood
principle is used to determine Af∗ such that the probability of ob-
serving the vector of photon counts y is maximized.

In SPIRAL [4], the Poisson intensity reconstruction was achieved
by minimizing a sequence of convex subproblems regularized by a
variety of penalty terms. One penalty term used, in particular, is the
`1-norm, which has been shown to be a very good approximation to
the `0-norm [5]. While this SPIRAL-`1 approach yielded reasonably
good results, its reconstruction contained some spurious artifacts. In
[6], these reconstruction errors can be corrected using a nonconvex
`p-norm penalty term, where p < 1. This paper uses this nonconvex
`p penalty within the SPIRAL framework to eliminate the spurious
artifacts in the Poisson intensity reconstruction while keeping re-
construction error low. The resulting optimization problem will be
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nonsmooth and non-convex. The proposed approach is based on the
recent work of Zuo et al. [7], who proposed a simple and efficient
iterative algorithm for `p-norm non-convex sparse coding which
was an extension to the popular soft-thresholding operator [8].

2. PROBLEM FORMULATION

In this section, we first formulate the Poisson intensity reconstruc-
tion problem as a constrained optimization problem with an `p
penalty term. Then, based on [4], we describe how it can be solved
using a sequence of separable nonconvex subproblems. Finally, we
discuss how these subproblems can be solved using generalized soft-
thresholding.

2.1. Sparse Poisson Intensity Reconstruction using `p- norm

The Poisson reconstruction problem has the following constrained
optimization form (see e.g., [9]):

minimize
f∈Rn

Φ(f) ≡ F (f) + τ pen(f)

subject to f � 0, (1)

where F (f) is the negative Poisson log-likelihood function

F (f) = 1TAf −
m∑
i=1

yi log(eT
iAf + β),

where 1 is the m-vector of ones, ei is the i-th column of the m×m
identity matrix, β > 0 (typically β � 1), and pen : Rn −→ R is
a penalty functional. In this paper, we will consider pen(f) = ‖f‖pp
(0 ≤ p < 1) as the penalty function in (1). Then the generalized
constrained optimization problem can be written as

f̂ = arg min
f∈Rn

Φ(f) ≡ F (f) + τ ‖f‖pp

subject to f � 0, (2)

where τ > 0. As described in [4], the solution of the problem (2)
can be found by minimizing a sequence of quadratic models to the
function F (f) approximated by second-order Taylor series expan-
sion where the Hessian replaced by a scaled identity matrix αkI with
αk > 0 [10]. Simplifying the second-order approximation yields a
sequence of subproblems of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
‖ f ‖pp

subject to f � 0, (3)

where
sk = fk − 1

αk
∇F (fk).
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Note that the subproblem (3) can be separated into scalar minimiza-
tion problems of the form

f∗ = arg min
f∈R

Ω(f) =
1

2
(f − s)2 + λ|f |p,

subject to f ≥ 0. (4)

where f and s denote elements of the vectors f and sk respectively
and λ = τ/αk. We next describe how to solve (4) in two steps: first
without the constraints, then with the constraints.

2.2. Generalized Soft-Thresholding (GST) Function

As shown in [7], for a given regularization parameter λ > 0 and
p-norm for Ω(f) in (4), there exists a threshold value γp(λ) (that
explicitly depends on p and λ) such that if s ≤ γp(λ), the global
minimum of (4) is f∗ = 0; otherwise, the global minimum will be
a non-zero value (see Fig. 1). We now show how to compute the
threshold γp(λ) so that we can compute f∗.

Fig. 1. The plot of the scalar quadratic function Ω(f) with p-norm
penalty term in (4), where p = 0.5 and λ = 1.0. When s is less
than or equal to the specific threshold value γp(λ), then f∗ = 0 is
the global minimum. For the graph above s = γp(λ) and there are
global minima at f∗ = 0 and f∗p . If s > γp(λ), then the global
minimum is uniquely at f∗p > 0.

We note that Ω(f) is symmetric in s. Thus, without loss of
generality, we consider the case s > 0. When s = γp(λ), there
exists f∗p such that

Ω(f∗p ) = Ω(0) and (5)
Ω′(f∗p ) = 0 (6)

(see Fig. 1 as an illustration). By solving (5) and (6) simultaneously,
we can explicitly find the threshold value γp(λ) for given p and λ
values. Specifically, γp(λ) is given by

γp(λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p . (7)

For any s > γp(λ), the unique minimum f∗ = Sp(|s|, λ) of Ω(f)
is greater than 0 and is obtained by setting Ω′ to 0 :

Ω′(Sp(|s|, λ)) = Sp(|s|, λ)− s+ λp(Sp(|s|, λ))p−1 = 0. (8)

The root of Ω′ can be computed using fixed-point iteration. More
generally, the solution f∗ to (4) is given by the Generalized Soft-
Thersholding (GST) function

Tp(s, λ) =

{
0, if |s| ≤ γp(λ)
sgn(s)Sp(|s|, λ), if |s| > γp(λ)

(9)

(see [7] for details). We now consider the special cases p = 0 and
p = 1 for Tp(s, λ).

When p = 0, the GST function T0(s, λ) is called the hard-
thresholding function, and it solves

minimize
f

1

2
(f − s)2 + λ|f |0,

where

|f |0 =

{
0, if f = 0
1, if f 6= 0.

In this case, the GST function is given by

T0(s, λ) =

{
0, if |s| ≤ γ0(λ)
s, if |s| > γ0(λ),

(10)

where the thresholding value is obtained by evaluating (7) at p = 0,
i.e., γ0(λ) = (2λ)1/2.

When p = 1, the GST function becomes the soft-thresholding
function (see e.g., [8]), where γ1(λ) = λ, and

T1(s, λ) =

{
0, if |s| ≤ γ1(λ)
sgn(s)(|s| − λ), if |s| > γ1(λ),

In both cases, we do not compute Sp(|s|, λ) iteratively in (8), but
rather we compute it explicitly.

2.3. Nonnegativity Constraint

Since the subproblems in (3) are nonnegatively constrained, the so-
lution of the `p-minimization problem (4) also needs to be nonnega-
tive. Therefore the theresholding operator is employed to obtain the
next iterate:

fk+1 = max(0, Tp(s, λ)).

We call this nonconvex approach based on SPIRAL [4] and GST [7]
the SPIRAL-`p method.

3. NUMERICAL RESULTS

In this section, we evaluate the effectiveness of the proposed
SPIRAL-`p method by comparing it to the SPIRAL-`1 method.
We implemented the SPIRAL-`p method in MATLAB (on a PC
with Intel Corei7 2.7GHz Processor, 2 cores, 8GB RAM) by mod-
ifying the existing MATLAB code of the SPIRAL method [11]. In
the experiment, the true signal f is of length 100,000 with 1,500
nonzero entries (1.5% of sparsity), and the observed vector y is of
length 40,000. We generate Poisson intensity reconstructions for
23 different p-values ranging from 0.99 to 0. For that, we use the
parameters in SPIRAL-`1 as our default parameters in SPIRAL-`p.
More specifically, SPIRAL-`p is initialized using rescaled AT (y)
and terminates if consecutive iterates do not significantly change.
The regularization parameter τ in (1) is optimized to get the min-
imum Root Mean Square (RMS) error ‖f∗ − f̂‖2/‖f∗‖2 for each
p-value.
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Fig. 3. SPIRAL-`p intensity reconstruction with p = 0.05 (green diamond stems) compared with the SPIRAL-`1 intensity reconstruction (red
filled circle stems). The blue stems depict the true signal. There are 12 spurious solutions in the SPIRAL-`1 reconstruction. (A) SPIRAL-`0.05
reconstruction eliminates spurious solutions in the SPIRAL-`1 reconstruction. (B) SPIRAL-`0.05 solution generally matches the SPIRAL-`1
solution.
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Fig. 2. The plot of the RMS error and the number of nonzero en-
tries in the reconstruction over the p-values ranging from 0.99 to 0.
The left most data points in both curves correspond to the error and
number of non-zeros of SPIRAL-`1. There is a steep decrease in the
RMS error after p = 0.4 while, non-zeros attain their exact value
1500 at p = 0.35. RMSE (%) = 100 · ‖f∗ − f̂‖2/‖f∗‖2.

The RMS error curve in the Fig. 2 shows that there is no con-
siderable change in the error for the p-values ranging from 0.99 to
0.4. But when p < 0.4, the RMS error decreases drastically and
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Fig. 4. The accuracy and the strength of the SPIRAL-`0.05 recon-
struction after thresholding at amplitude 7 × 105. Top: Absolute
difference between the true signal and SPIRAL-`1 solutions. Note
that there are 12 spurious solutions in the SPIRAL-`1 reconstruc-
tion. Bottom: Difference between SPIRAL-`1 and SPIRAL-`0.05
solutions. The height of the positive stems reveals that there are no
spurious solutions in the SPIRAL-`0.05 reconstruction.
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is less than the SPIRAL-`1 RMS error. Meantime, the number of
nonzero entries of the reconstruction also converge to the exact spar-
sity as p value decreases. These results reveal that the SPIRAL-`p
with p value ranging from 0.35 to 0 can generate better reconstruc-
tion than SPIRAL-`1 method. For instance, when p = 0.05, Figs. 3
and 4 depict the high accurate SPIRAL-`p reconstruction without the
spurious solutions appear in the SPIRAL-`1 reconstruction. Further-
more, the SPIRAL-`0.05 intensity reconstruction exaclty matches the
sparsity of the true signal. In additional, we note that the amplitude
of the SPIRAL-`0.05 reconstruction is greater than the SPIRAL-`1
reconstruction (see Fig. 4).

While SPIRAL-`p generates high accurate, high strength re-
construction for small p-values, it requires more computational
time than the SPIRAL-`1 method (see Fig. 5). More precisely,
SPIRAL-`1 takes less than 1 second to obtain the reconstruction,
while SPIRAL-`p takes on average, 66 seconds. The SPIRAL-`0
method requires low computational time (21 seconds) compared to
other SPIRAL-`p methods because when p = 0, the GST func-
tion reduces to the hard-thresholding function (10), which has a
closed-form solution.
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Fig. 5. Computation times of the SPIRAL-`p over p-values ranging
from 0.99 to 0. The plot corresponding to SPIRAL-`p initialized
using the SPIRAL-`1 solution lies below the plot corresponding to
initializing with AT (y) almost everywhere. Note in particular, that
there is a significant computational time reduction from p = 0.45 to
p = 0.15.

Initialization. For the same p values as in the previous experiment,
we initialize the SPIRAL-`p using the solution of the SPIRAL-`1.
The resulting reconstructions have similar RMS error values and the
same number of nonzero entries as in the Fig. 2. However, initial-
izing the SPIRAL-`p with the SPIRAL-`1 solution improves com-
putational time. On average, we can obtain 30% improvement in
computational time (see Fig. 5) if we solve the SPIRAL-`1 problem
first and leverage its solution to initialize SPIRAL-`p.

Finally, we ran the proposed SPIRAL-`p method with p = 0.05
for ten different simulated measurement vectors y1,y2, . . . ,y10

with Poisson noise. Specifically, the Poisson noise levels in yi’s are
around 16%, where noise (%) = 100 · ‖Af∗ − yi‖2/‖yi‖2. The

Experiment RMSE (%) Non-zeros
1 5.945 1500
2 5.947 1500
3 5.959 1500
4 5.991 1500
5 6.140 1500
6 6.077 1500
7 5.827 1500
8 5.955 1500
9 5.973 1500
10 6.162 1500

Average 5.998 1500

Table 1. RMS error and number of non-zeros in reconstructions
using 10 different Poisson measurements. Here, RMSE (%) = 100 ·
‖f∗ − f̂‖2/‖f∗‖2.

resulting RMS error and the number of nonzeros for each of the final
reconstruction are shown in the Table 1. In particular, we were able
to recover the exact sparsity of the true signal in all ten different
experiments with an average of 5.998% RMS error. Therefore, we
conclude that for this experimental setup, the proposed SPIRAL-`p
method is robust with respect to different Poisson noise realizations.

Analysis. In the proposed SPIRAL-`p method, the p-values range
from 0 to 1. But when p gets closer to 0, numerical issues arise. In
particular, when p = 0.02, the objective function value in Eq. (1)
is O(10165). If we decrease p further, the objective function val-
ues become very large, which affect the steplength αk in (3). While
the SPIRAL-`p method still converges to a solution (using the differ-
ence between iterates as a termination criterion rather than a decrease
in the objective function), the monotonic behavior of the objective
function in the algorithm can no longer be enforced with arbitrarily
small p-values.

4. CONCLUSION

In this paper, we have formulated the nonnegatively constrained
sparse Poisson intensity reconstruction algorithm as a `p noncon-
vex regularized minimization problem (2). We have showed that
this approach can be uncoupled into the separable `p-minimization
problems in the form of (4), with each scalar minimization problem
is solved using Generalized Soft-Thresholding (GST) function (9).
We have demonstrated that the proposed SPIRAL-`p reconstruction
for small p values eliminates the spurious artifacts found in the
SPIRAL-`1 reconstruction. While the proposed method leads to
more accurate and high strength reconstructions, it requires more
computational effort because evaluating the GST function requires
solving a zero-finding problem (8) iteratively. We have found that
computational time can be decreased significantly by using the
SPIRAL-`1 solution to initialize the SPIRAL-`p method.
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