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ABSTRACT
In this paper, we propose an image-based localization system,

applicable for a number of indoor scenarios including office build-
ings, airports, chain stores, etc. In such applications, text/numbers
are suitable distinctive landmarks for localization. The proposed sys-
tem takes advantage of OCR to read the text/numbers and provide a
rough estimate using the floor plan. Next, it performs OCR-aided
stereo feature matching to refine the estimate by solving a PnP prob-
lem. Experiments show that this system achieves a median local-
ization error of less than 50 cm for test positions located as far as
7 meters from a 20cm by 30cm number plate using different test
devices in a university building scenario.

Index Terms— Indoor localization, OCR, PnP problem, Stereo
feature matching, Coplanar features

1. INTRODUCTION

The most prevalent technology for indoor localization is based on
fusion of Wi-Fi RSS fingerprints with inertial sensors data [1, 2].
In scenarios, where Wi-Fi access points are not available or when-
ever greater accuracy is required, image-based methods can be used
as an alternative solution for localization. Image-based methods
proposed in the literature can be categorized into two classes, im-
age retrieval-based (fingerprinting-based) [3–6] and landmark-based
(logo-based) [7,8] methods. Image retrieval-based methods are good
candidates for localization in scenarios with no (or few) distinctive
landmarks, such as outdoors or generic indoor scenarios. On the
contrary, landmark-based methods provide good location accuracy
wherever there exist enough number of highly textured and distinc-
tive landmarks, such as shopping malls abundant with commercial
logos [5,6]. Texture is required to extract enough feature points nec-
essary for unique logo detection.

We have observed that in some indoor environments such as air-
ports, chain stores or university (office) buildings, where the most
distinctive landmarks are text and/or numbers, the aforementioned
methods usually fail. The reason is that text or numbers are not as
textured as commercial logos. Hence, stereo feature matching in
landmark-based methods fails to extract enough distinctive features
in order to distinguish between different numbers. For instance,
feature-based methods cannot distinguish between room numbers
4148 and 4140 or gate numbers B42 and B43. There is also a high
probability of seeing similar (repeated) visual scenery from differ-
ent locations. Hence, common image retrieval-based methods might
also fail to find the actual corresponding image (location) in these
scenarios. This motivates the use of OCR engines to exactly recog-
nize the existing numbers.

By recognizing the existing numbers in the query image, OCR
can provide a rough user location estimate based on a floor plan.

Fig. 1: Block diagram of the proposed localization system

To the best of our knowledge, [9] is the only work in the literature
that utilizes OCR for rough localization in indoor scenarios. They
combine OCR with magnetic tracking methods to provide better ac-
curacies.

Our main contribution is to propose a system, called OCRA-
POSE, based on a combination of OCR and landmark-based tech-
niques (stereo feature matching + PnP) for fine localization in the
mentioned applications. In fact, OCR provides a rough location
estimate and the following OCR-aided landmark-based method re-
fines it. The proposed system is not a simple concatenation of OCR
and landmark-based techniques. In fact, OCR improves the feature
matching in three aspects. First, it confines the database search space
to the images taken from the existing text/number plate. Second, it
maximizes the probability of feature points co-planarity, which is
required for query features 3D labelling. Lastly, it decreases the
probability of having cross matched outliers since the vicinity of the
text/number plate in query image is matched to the vicinity of the
same text in the database image. State of the art methods are used to
design different parts of the system, including text/number detection,
OCR, stereo matching, PnP, etc.

2. THE PROPOSED SYSTEM (OCRAPOSE)

Fig. 1 depicts the structure of the proposed system. In the sequel,
we explain the role of each block in the system in details.

2.1. Text/number detection block

As seen in Fig. 1, first, the query image enters the text/number detec-
tion block. The role of the text/number detection block is to detect
the regions of interest (RoIs) that contain the number. The goal is
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NOT to miss the existing text/number plate regions while having the
ability to reject false positives (non-number plate regions detected as
number plates).

In this block, we first increase the query image contrast by ad-
justing its histogram as a preprocessing stage to prepare it for num-
ber regions detection. Among several experiments with cellphones
cameras in the university buildings, we found that graph-based vi-
sual saliency (GBVS) maps proposed by [10] almost never misses
the number plates in RoI detection. Fig. 2a shows the GBVS map
of a test image taken inside a university building. As seen, there are
high peaks located inside the plate as desired and other false posi-
tive peaks located at the notice paper, door handle and corner of the
garbage can. The next task is to locate the regions of interest.

In order to locate the RoIs, we find the peaks (local maxima) in
the saliency map. This map amplitudes are normalized to 1. First,
we vectorize the map signal to be a vectorX with length N, where N
is equal to the number of image pixels. Then, we find the locations
(Li) of the peaks in the signal. We impose the following conditions
on number of peaks (Npeaks), peaks height (i.e. their value in the
GBVS map, Hi) and their locations

• Npeaks ≤ 10

• Hi ≥ 0.1 ∀i
• |Li − Lj | > N

20
∀i, j

where parameters have been found empirically. The last condition
states that the distance of any two peak locations (i.e. Li and Lj)
should be at least 1

20
of the vectorized map length. This is to prevent

the case of having peaks close to each other, which belong the same
salient object with a high probability.

Once peaks are selected and localized in the image (Li →
LImage

i = (rowi, coli)), we search for rectangular regions around
the detected peaks so they include rectangular text/number plates.
These regions are selected in the following way. Consider a
point Xk inside the map, with height Hk and image location
LImage

k = (rowk, colk). This point is considered to be inside
the region of the peak Pi if

• Hk ≤ 1
2
Hi

• |rowk − rowi| ≤ m
scalerow

• |colk − coli| ≤ n
scalecol

wherem and n are the number of rows and columns in the image, re-
spectively. scalerow and scalecol are two parameters that are found
empirically. They basically show the ratio of the dimensions of the
regions with respect to the image size.

The first condition usually prevents the RoIs to be perfectly rect-
angular since the saliency map surface could have any shape and its
thresholding (first condition) results in a general form of RoI. Hence,
RoIs are semi-rectangular as seen in gray in Fig 2b.

In our experiments, we realized the proposed RoIs have smaller
area compared to circular ones (i.e. constant distance from the peak
image coordinates |LImage

k − LImage
i | < cte.) or those resulted

from pure height thresholding of the saliency map. Smaller regions
mean better confinement to the number region and greater perfor-
mance of the following recognition stage.

In our application, number plates are made of metal. Hence,
ambient light experiences a uniform reflection from these surfaces
and creates distinct patch-like regions with almost the same intensi-
ties in the query grayscale image. Such regions are good candidates
to be detected as maximally stable extremal regions (MSER) [11]
regions as also suggested by [12] for text region detection. Hence,

(a)

(b) (c)

Fig. 2: Results of Number detection and recognition, (a) Graph-
based visual saliency map [10], (b) MSER regions inside the semi-
rectangular RoIs close to the number plate, (c) The recognized num-
ber and the its box

we search for MSER regions in the detected RoIs. This would re-
ject some of the false positive regions (RoIs without any MSER re-
gions) and refine the number part of the ROIs, which improves the
performance of the OCR block. Fig. 2b shows the MSER regions
inside the detected semi-rectangular ROIs. Even after applying the
MSER detector, some false positive regions will remain as seen on
the garbage can in Fig. 2b. OCR block will reject these remaining
regions afterwards since they do not contain any relevant number.

2.2. OCR block

The OCR block recognizes the existing number in the detected ROIs.
We perform some preprocessing prior to feeding the detected MSER
regions to the OCR block. This preprocessing includes global bi-
narization of the ROIs and removing small/large regions. We also
perform post processing on the output of OCR engine as follows.
Due to the specific font of our experiment numbers, as seen in Fig.
2c, digit 1 is similar to a vertical line segment (i.e. I ) as opposed to
standard digit 1 structure. So, the OCR block recognizes it as letter
i. So, we replace each recognized i or I character by a digit 1. Next,
we perform matching against the database of room numbers in the
floor map and replace the detected number with the nearest existing
number in the environment. Fig. 2c shows the result of the number
recognition.

Having done text/number detection and localization, a rough es-
timate of the user’s location is provided since the locations of tex-
t/number plates are known using the building floor plan. In order to
refine the location estimate, we take advantage of SIFT [13] features
of the image using [14]. We utilize a landmark-based method for fine
localization similar to the supervised logo-based method discussed
in [8]. To find the 3D coordinates of any query features, we use 3D
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coordinates of the plate corners, which are measured in the training
phase in advance.

2.3. Fine localization using Landmark-based methods

As stated, we extract SIFT features of the query image and utilize a
landmark-based method to refine the location estimate. Landmark-
based localization methods generally have two phases, training and
test. In the training phase, a number of plate images (or only their
SIFT features) are captured and stored in the database. This is neces-
sary since in matching the query image against the image database,
we usually encounter a huge view angle difference between query
and database images. So, we basically have to perform wide base-
line matching. View point invariance of SIFT features is limited.
Therefore, in order to have a successful feature matching, which is
crucial in success of fine localization, we should consider a number
of images located at different view points for each plate. In our ex-
periments, for each number plate, we captured 3 images located at a
distance of 4 meters from the plate plane and separated by 1 meter
horizontally. As experimented, this would result in a successful SIFT
feature matching for all the query locations located in a hallway and
in a field of view of more than 70 degrees of the number plate and
can effectively compensate for the limited view point invariance of
SIFT features .

In addition to storing the database images (features), we also
need to measure and store the 3D (world) coordinates of at least
four points in these images. This is the minimum number of points
required to solve a perspective n-point (PnP) problem [15]. In PnP
problem, the pose (position + rotation matrix) of a calibrated camera
is computed from n 3D-2D point correspondences. We perform this
by measuring the 3D coordinates of the plate corners similar to [8].

In the test phase, the user takes an image at its location and sends
it to the server. In the server side, after performing text/number de-
tection and recognition as explained, the SIFT features of the query
image are extracted and matched against features of the correspond-
ing database image (i.e. database image containing the same tex-
t/number). The details of this stereo feature matching are explained
in the following.

2.3.1. Stereo feature matching block

Stereo feature matching between query and database images is per-
formed to provide 3D labels for the query features. As we will ex-
plain later, most of the features detected in the database image are
coplanar and their 3D coordinates can be computed using 3D coor-
dinates of the number/text plate corners. Hence, we can label any
query features matched to one of the coplanar database features.

In order to improve the stereo feature matching, we can bene-
fit from the number/text plate location information inside the image
provided by the OCR block as follows. First, we extract all the SIFT
features from the entire query image. Then, we only select n-closest
features to center of the number box in the image (depicted in Fig.
2c). n is a parameter of our system. These points are coplanar with
the text/number plate with a high probability. The co-planarity is
desired to compute the 3D coordinates of the query features, which
is required to solve the PnP problem. We will explain this in details
later. Since query feature points located close to the plate are sup-
posed to be matched with the database ones located near the same
plate, we can confine the database features to the set of n features
closest to the number box plate. This would increase the matching
accuracy and prevents matching to outliers. Fig. 3 shows the se-
lected matched features in the query (left) and the database (right)

Fig. 3: Feature matching for the 15-closest features to the number
box center; all of matched feature are almost coplanar

images when n = 15.

2.3.2. PnP block

Text/number plate features are located on a single plain in the 3D
space, i.e. the plane containing the brown door in Fig. 3. The way we
select the n-closest features maximizes the probability of being on a
single plain as explained. Co-planarity of the matched feature has
the main advantage of easing the query feature points 3D labeling.
We will explain it later.

When the corresponding database 2D (image) and 3D points are
coplanar, there exist a homography relation between them [7]. As
stated, for each database image, we measure the 3D coordinates
of the plate corners (Xi). We also manually determine and store
their corresponding image coordinates (xd

i ) in the database. If we
represent these coordinates with Xd

i =
(
Xd

i Y d
i 0 λd

i

)T and

xd
i =

(
xdi ydi γd

i

)T , respectively, we get

xd
i = Pd Xd

i ∀i (1)

where Pd is the database camera matrix. Since the z coordinate
of Xd

i s is zero, we can define the shortened coordinates as X̃d
i =(

Xd
i Y d

i λd
i

)T similar to [7] and get

x̃d
i = Hd X̃d

i ∀i (2)

where x̃d
i = K−1

d xd
i is the normalized image coordinates of the

database feature and Kd is the known calibration matrix of the
database camera. Hd is a 3 × 3 invertible homography matrix that
relates the 3D and image coordinates of the database image features.

We can use this homography to find the 3D coordinates of the
query features (xq

i ) in the test phase. Assume after stereo matching,
database feature xd

i is selected as the closest match. The shortened
3D coordinates of the query feature (X̃q

i ) can be computed as

X̃q
i = H−1

d x̃d
i ∀i (3)

where X̃q
i =

(
Xq

i Y q
i λq

i

)T . Once 3D and image coordinates
of the query image as well as query camera calibration matrix are
known, a PnP problem can be solved to find the complete pose (i.e.
rotation matrix + location) of the query camera/user.

As explained, we have to find the Hd for each database image
in the training phase. We convert this problem to a PnP problem and
solve it with the robust method proposed by [16], which is also in the
case of coplanar points. We found through experiments the method
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proposed in [16], called RPnP, provides very good results even for
the 4 noisy corners that we select manually in each image. For the
database images, RPnP can solve for the rotation matrix (Rd) and
the translation vector (td) in the following equation

x̃d
i = RdX̃

d
i + td ∀i (4)

where x̃d
i and X̃d

i are the normalized image and shortened 3D co-
ordinates of the database camera similar to our previous definitions.
Comparing this with the equation considered in [8]

x̃d
i = Hd X̃d

i ∀i (5)

and with some manipulation, one can find Hd from Rd and td as

Hd = [R1
d R2

d td] (6)

where Rk
d is the kth column of Rd. This is the RPnP problem that

should be solved in the training phase to find Hd. The goal is essen-
tially the opposite of [7] has targeted. Since, we have the complete
pose information and want to get the homography matrix in order to
label the query features. Another RPnP problem should be solved in
the test phase to find a fine estimate of the user’s location. Since we
obtained X̃q

i using (3) and the normalized image coordinates of the
query features (x̃q

i = K−1
q xq

i ) using stereo matching, we can solve
a PnP problem for

x̃q
i = RqX̃

q
i + tq ∀i (7)

and find Rq and tq . Here RANSAC should be combined with RPnP
to make it robust to outliers (bad matches). After that, the user’s
location (Cq) can be calculated as Cq = −R−1

q tq .

2.3.3. Location estimation block

As stated, for each text/number plate, we store 3 images in the
database. In the test phase, we compute three location estimates
using each of these images. In the final location estimation block,
we should combine these estimates from different database images.
Thus, we linearly combine each location estimate Ci

q with weight
wi as

Cq =

3∑
i=1

wi C
i
q (8)

Since different database images are located at different view points
from the plate, usually one or two of them give us appropriate num-
ber of matches and should be relied on for localization. So, we
choose the weights to be the exponential of the RANSAC-verified
matches to give more weights to the greater number of matches. That
is, if the number of verified matches is Ni, then wi = eNi .

3. EXPERIMENTAL RESULTS

As stated, [9] uses OCR for indoor localization. It has suggested us-
ing OCR when magnetic tracking fails and considered a localization
error of 5 meters to be acceptable. Basically, it is considering the
text/number plate location as a representative of the user’s rough lo-
cation. The authors have mentioned that whenever they need OCR-
based localization in their system, they update the user’s location on
the map based on the seen characters in the query image. Since,
they have not mentioned how this update exactly happens and we
need to compare its performance with our fine localization system,
we have to define a new benchmark. This benchmark would also
be the representative of all methods that perform OCR-based rough
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Benchmark    (Any, Any)                        err=150 cm

OCRAPOSE   (Nexus 4, Nexus 4)          err=29 cm

OCRAPOSE   (Nexus 4, Galaxy S3)       err=54 cm

OCRAPOSE   (Nexus 4, ASUS Tablet)   err=32 cm

Fig. 4: CDF of the localization error (cm) for benchmark and
OCRAPOSE using different test devices. Median error of each sce-
nario is mentioned in the legend

localization. In the benchmark, we assign the centroid of all test
locations as the estimated rough location. Centroid is the point/loca-
tion that has the minimum average of square distances (errors) to all
the test locations. Hence, we consider the minimum average error
case among the OCR-based rough localizers as the benchmark.

We perform camera calibration in advance as calibration matri-
ces are assumed to be known. OCR function deployed in MATLAB
R2014a was utilized for number recognition. MATLAB has incorpo-
rated Google Tesseract engine [17], which uses convolutional neu-
ral network for character recognition. We stored 3 images in the
database as explained. Due to limited space available, we only show
the results of one scenario. In the scenario, we have considered 26
locations located in a hallway in front of the number plate. These
points are located on a 7m×1m rectangular grid. The grid is located
in a hallway at a minimum distance of 1 meter from the plate wall.
Points are separated by 1m horizontally. Each consequent points
on left or right wings of the frame are separated by 50 cm. This
results in a total number of 26. Fig. 4 shows the CDF of the local-
ization error for the proposed system (OCRAPOSE) and the bench-
mark. OCRAPOSE performance was tested in three scenarios with
devices shown in the legend as pairs. The pair show the training and
test devices, respectively. Test was performed for Google Nexus 4,
Samsung Galaxy S3 and ASUS Transformer tablet while Nexus was
used for training. These are all commercial cellphone or tablets and
both training and test were done by simply holding them towards the
number plate with an arbitrary orientation. As seen in the figure (leg-
end), the median error in the benchmark is 150 cm, while it is below
54 cm for any test devices using OCRAPOSE. So, OCRAPOSE has
refined the location by at least a factor of 3 approximately. As seen,
testing with a different device weakly affects the accuracy provided
the calibration matrix of devices are known.

4. CONCLUSION

We propose an image-based system, called OCRAPOSE, applicable
for localization in office buildings, chain stores, airports, etc. The
proposed system combines OCR and landmark-based techniques to
provide a fine location estimate. It was demonstrated that OCRA-
POSE achieves a median localization error of less than 50 cm for test
positions located up to 7 meters away from a 20cm× 30cm number
plate using different test devices in a university building scenario.
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