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ABSTRACT

This paper examines a novel binary feature referred to as
the Local Hybrid Patterns (LHP) that is generated by mixing
highly discriminative bits of the binary local pattern features
(BLPFs) such as the Local Binary Patterns (LBP), Local Gra-
dient Patterns (LGP), and Mean LBP (MLBP). Starting with
the most discriminative BLPF selected, the LHP generating
algorithm iteratively updates the bits of the selected BLPF
by replacing the least discriminative bit with the most dis-
criminative bit of all the candidate BLPFs. At the expense
of a small increase in computation, the LHP is guaranteed to
give smaller or equal empirical error compared to any BLPFs
considered in the pool. Experimental comparison of differ-
ent sets of features consistently shows that the LHP leads to
better performance than previously proposed methods under
the AdaBoost face detection framework on MIT+CMU and
FDDB benchmark datasets.

Index Terms— Local hybrid pattern, feature combina-
tion, mean local binary pattern, AdaBoost, face detection

1. INTRODUCTION

The most popular face detectors today are based on the Vi-
ola and Jones [1] detector, which is constructed in a cascaded
manner using the AdaBoost [2] algorithm with Haar-like fea-
tures. Unfortunately, this detector and its variants [3, 4] lack
robustness to different lighting conditions.

One feature that has enhanced the detector’s robustness
to global illumination variation is the Local Binary Patterns
(LBP) [5], which is a binary local pattern feature (BLPF) gen-
erated from an image patch by comparing the intensity of the
center pixel with its neighboring pixels and concatenating the
binary comparison results. The use of relative intensity makes
it more robust against global illumination variation without
incurring much computational overhead. As a result, the LBP
and its variants have been extensively utilized for face detec-
tion [6, 7, 8].

Another BLPF which has received some attention is the
Local Gradient Patterns (LGP) [9]. It is considered to be ro-
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bust against local illumination variation. After computing the
absolute gradient between the center pixel and its neighbors,
the LGP is obtained by comparing the gradients with their
mean.

The BLPFs can be extended to multi-block BLPFs. The
multi-block LBP (MB-LBP) [7] and multi-block LGP (MB-
LGP) [10] are obtained by extending pixel-based operation to
block-based operations: instead of pixel values, mean values
of blocks are used during the feature extraction to better de-
scribe local structures of an image. It has been shown that
multi-block features perform better than pixel-based BLPFs
[7] for face detection.

The Mean LBP (MLBP) [11] was first proposed for the
face recognition task without drawing much attention in face
detection literature. In this paper, MLBP and its multi-block
extension, Multi-block MLBP (MB-MLBP) are considered as
feature candidates.

Recent object detection research draws upon the strengths
of a wide variety of features [12, 13, 14]. In [14], the Ad-
aBoost algorithm combines the most discriminative BLPF
from a pool of candidate features and image patch locations
such that at each round the feature and patch location gener-
ating the smallest error is chosen among all candidates.

Previously, a BLPF encoded as a fixed length bit-string
was selected at each round of the AdaBoost face detection
framework, and all the bits in the string were generated under
the same operation. In this paper, the fixed length bit-string
is likewise selected at each round but the bits can originate
from different types of BLPFs which means each bit in the bit-
string can be generated under different operations. In other
words, we extend feature combination from “word-wise” to
“bit-wise”.

The remaining sections of this paper are organized as fol-
lows. The details of the LHP generating algorithm is de-
scribed in Section 2. Experimental results are described in
Section 3. Finally, Section 4 summarizes the paper.

2. METHOD

In this paper, let us define F (I; a, b, x, y) to denote an L-bit
BLPF F extracted from an input image I at position (x, y)
with a block size a×b. The blocks are generated from 3a×3b
image patch by dividing it into 3× 3 grid, and a w× h image

1468978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



contains (w− 3a+1)× (h− 3b+1) patches. Note that LBP
and LGP are computed using 1× 1 size blocks (or pixels).

When training a face detector using word-wise meth-
ods, AdaBoost algorithm calculates errors of all BLPFs and
patch positions Fi(·; a, b, x, y) using the training images
and chooses the best feature F̂ and patch (â, b̂, x̂, ŷ) which
shows the smallest empirical error. The error is calculated
as follows. For each feature and patch, we construct two
histograms Hp and Hn for positive and negative datasets,
respectively. The histograms have 2L bins, each corre-
sponding to a feature value. Given mp positive training
images Ip1, · · · , Ipmp

and their weights wp1, · · · , wpmp
, the

height of the histogram Hp at feature value v is Hp(v) =∑mp

j=1 1{Fi(Ipj ; a, b, x, y) = v}wpj , where 1{·} is the in-
dicator function. Hn is constructed in a similar way, and
the error of Fi(·; a, b, x, y) is defined as ε(Fi, a, b, x, y) =∑2L

v=1 min{Hp(v), Hn(v)}. The details of the word-wise
approaches can be found in [15]. Error calculation requires a
significant amount of computation, which makes the number
of error calculation a dominant factor in time complexity.

2.1. Local Hybrid Patterns

Suppose we are given N types of BLPFs F1, F2, . . . , FN ,
each havingP candidate image patches indexed by (a, b, x, y).
Also, we assume that all features have bit length L. The
word-wise methods need to perform PN error calculations.

The intuitive idea of this paper is to find the most discrim-
inative L bits fromN types of BLPFs. However, exhaustively
examining all possible combinations of bits is almost compu-
tationally impossible. Each image patch produces NL bits,
and L bits should be chosen; in total, there are P ×

(
NL
L

)
can-

didates compared to PN candidates in the previous methods.
For instance, in our biggest experiment setting (P = 1, 517,
N = 3, and L = 8), the number of candidates explosively
increases from 4,551 to 1,115,709,507. This makes conven-
tional feature selection algorithms such as AdaBoost and ran-
dom forests [16] infeasible to use; we have to test billions of
candidates during each round.

Our method remedies this problem by effectively and effi-
ciently choosing the discriminative bits in a greedy manner as
described in Algorithm 1. First, we now define the N BLPFs
as sets consisting of their bits: Fi = {f1i , · · · , fLi }. We
also define an error calculation function ε(F, a, b, x, y) which
takes a set of BLPF bits F and an image patch (a, b, x, y),
and returns the empirical error through the error calculation
procedure described at the beginning of this section.

We firstly choose the N + 1 candidate patches from P
patches based on errors of original features: N with the small-
est errors on individual features (lines 1–4), and one with the
smallest average error (lines 5–6). Then we perform a greedy
local search on each patch. Starting from the L bits of the
best feature on the patch, we iteratively update the bits by:
(1) choosing and removing the least conducive bit among the

Algorithm 1 Extraction process of Local Hybrid Patterns
// Obtain patch locations

1: for i = 1 to N do
2: (âi, b̂i, x̂i, ŷi)← argmin(a,b,x,y) ε(Fi, a, b, x, y)

3: F̂i ← Fi

4: end for
5: (â0, b̂0, x̂0, ŷ0)← argmin(a,b,x,y)

∑N
i=1 ε(Fi, a, b, x, y)

6: F̂0 ← argminF∈{F1,··· ,FN} ε(F, â0, b̂0, x̂0, ŷ0)

// Local greedy method to obtain LHP
7: for i = 0 to N do

// Initizlizing
8: F i

sel ← F̂i; F i
unsel ← (∪Nj=1Fj)\F̂i

9: eicur ← ε(F̂i, âi, b̂i, x̂i, ŷi); c← 0
10: while c < L/2 do

// Select the least discriminative bit
11: fworst ← argminf∈F i

sel
ε(F i

sel\f, âi, b̂i, x̂i, ŷi)
// Remove the least discriminative bit

12: F i
sel ← F i

sel\fworst
// Select the most discriminative bit

13: fbest ← argminf∈F i
unsel

ε(F i
sel ∪ f, âi, b̂i, x̂i, ŷi)

// Update LHP if error is improved
14: ebest ← ε(F i

sel ∪ fbest, âi, b̂i, x̂i, ŷi)
15: if eicur > ebest then
16: eicur ← ebest; F i

sel ← F i
sel ∪ fbest

17: F i
unsel ← (F i

unsel\fbest) ∪ fworst; c← c+ 1
// If not, terminate the search

18: else
19: F i

sel ← F i
sel ∪ fworst; break

20: end if
21: end while
22: end for
23: s← argmini e

i
cur; LHP← F s

sel

L bits (lines 11–12), (2) calculating errors for NL − L uns-
elected bits by considering a new pattern consisting of L− 1
remaining bits and one of NL − L unselected bits (line 13),
and (3) replacing the removed bit by most discriminative bit
if the training error decreases by replacement (lines 14–17).

Note that in the iterative procedure, the actual exchange
is made only if the training error decreases. If not, the local
search terminates with the current selection (lines 18–19). We
also restrict the maximum number of replacements to L/2, to
facilitate fast training while allowing an adequate number of
replacements (line 10). The assumption behind the restriction
in the number of replacements is that dominant feature type
constructing L bits should be the original feature which made
the patch to be chosen, and more than L/2 replacements can
change the dominant feature type. After the search algorithm
terminates on all N + 1 patches, the feature with the smallest
training error is selected to form the new LHP (line 23).

The number of error calculation in our algorithm has no

1469



Fig. 1. Values of LBP, LGP, and MLBP for three similar
patches.

Fig. 2. Selected position of LBP, LGP, and MLBP up to third
and fourth stages.

large difference compared to previous methods. At first, PN
error calculations are needed to select the N + 1 patches. At
each iteration of the local search, L calculations are done for
selecting the worst selected bit, and NL−L for selecting the
best unselected bit. The search is performed for at most L/2
steps. Thus, there are at most PN + (N + 1)× (L+NL−
L)×L/2 = PN+L2N(N+1)/2 error calculations through-
out our algorithm. In our example, this number evaluates to
4,935, which is an 8.4% increase compared to 4,551.

This small increase in training time can be justified by
smaller empirical errors. We initialized the local search with
the best original features and made replacements only when
there is improvement on training error. This enables us to
guarantee that generated LHP always has smaller or equal
training error compared to word-wise methods. In AdaBoost
algorithm, smaller training error leads to higher probability of
training examples having large margins, which again leads to
smaller upper bound on test error with high probability [17].
Thus, detectors trained using our algorithm are highly likely
to have lower test error than word-wise methods.

2.2. Binary Local Pattern Features for LHP

In this paper, we generate the LHP by combining bits of LBP,
LGP, MLBP, and their multi-block extensions. The MLBP is
identical to the original LBP except that it uses the mean in-
tensity value of neighboring pixels instead of the center pixel
value. In fact, the MLBP does not involve center pixel values.

The MLBP is more robust to illumination and small lo-
cation variation than both LBP and LGP. Consider the three
image patches shown in Figure 1. The patches with different
center values can be thought as parts of face edges captured
from different facial images. Both the LBPs and LGPs ob-
tained from the patches differ completely, while the MLBP is
the same for all three images.

Table 1. Experiments and detection rates at 0.1 FPPI.
Features Used Previous LHP
LBP+LGP 0.780893 0.784955
LBP+LGP+MLBP 0.783214 0.791143
MB-LBP+MB-LGP 0.795011 0.800232
MB-LBP+MB-LGP+MB-MLBP 0.800812 0.804487

Figure 2 supports the above argument. Based on mean
image of the training set, we plotted the positions of pixel-
based LBP, LGP, and MLBP selected by a word-wise algo-
rithm. The left three images show the selected positions of
LBP, LGP, and MLBP, respectively, up to the third stage of
the classifier. The right three show the positions up to the
fourth stage. We can notice that positions of MLBP are con-
centrated around eyes and mouth and on the boundary of face
while others are distributed more uniformly over the face.

As in the other features such as MB-LBP and MB-LGP,
MLBP can be extended to a novel feature named Multi-block
Mean Local Binary Patterns (MB-MLBP).

3. EXPERIMENTS

3.1. Experimental Settings

Faces from AFLW dataset [18] were utilized for positive ex-
amples. We picked faces that have estimated yaw angle from
-30◦to 30◦. We computed the mean face from landmarks and
performed similarity transform to align the faces in the same
position and direction. As a result, 10,031 faces were ob-
tained from the dataset. Among them, 7,531 faces were ran-
domly chosen for training dataset, and the rest were used for
validation. We also augmented the dataset with modification
to the original images such as scaling, rotation, translation,
and reflection. At last, the images were resized and cropped
into 22× 24 size gray-scale images. In this way, we obtained
75,310 training images and 25,000 validation images.

For negative examples, we gathered from the Internet
68,073 images that do not contain faces. Among them, we
used 58,073 for training dataset pool and 10,000 for vali-
dation. We sampled 100,000 images with size 22 × 24 for
negative training dataset, which was replaced with false pos-
itives of the cascade after each stage. For negative validation
dataset we used 1,000,000 images drawn from validation
dataset pool.

When training the stages of the cascade, we generated 25,
60, 120, and 400 weak classifiers for first, second, third, and
later stages, respectively. We trained face detectors using dif-
ferent selections of features and algorithms. For those utiliz-
ing multi-block BLPFs, we limited block sizes to be either
one of 1× 1, 1× 2, 2× 1, and 2× 2.

For evaluation of face detectors, ROC curves were ob-
tained using FDDB dataset [19], in both discrete and continu-
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Fig. 3. Comparison results of LHP with the state-of-the-art
algorithms on MIT+CMU dataset.

ous scores. The detection rate at 0.1 false positives per image
(FPPI) was obtained for quantitative comparison. Due to lim-
ited space, we only present results measured in discrete score.
Continuous score results showed largely the same trends.

3.2. Experimental Results

Comparison with Single Features. We trained face de-
tectors using single type of BLPFs; LBP, LGP and MLBP.
Their detection rates on FDDB at 0.1 FPPI were 0.766196,
0.682073, and 0.774512, respectively. We believe that this
result is due to the robustness MLBP in detecting edges, as
previously mentioned.

Comparison with Multiple Features. We trained face
detectors using different sets of features for both previous
word-wise algorithm [14] and our bit-wise approach. The
feature sets and detection rates at 0.1 FPPI are illustrated in
Table 1. The first two rows show the results with pixel-based
features, and the last two show multi-block (a, b ∈ {1, 2})
results. The comparison results reveal that LHP consistently
shows higher detection rates than the word-wise algorithm
for all feature combinations.

Performance on Test Benchmarks. To compare the LHP
with the other state-of-the-art algorithms, we conducted the
experiment on two widely used datasets. For LHP, the results
from the configuration in the last row of Table 1 are reported.

The first benchmark was MIT+CMU dataset [20]. The
MIT+CMU dataset contains 130 gray-scale images with 507
frontal faces. ROC curves of our detector and other classifiers
[21, 14, 22, 1] are depicted in Figure 3. Our result was com-
parable to other state-of-the-art classifiers, and it even outper-
formed all of them above 0.125 FPPI range.

Fig. 4. Comparison results of LHP with the state-of-the-art
algorithms on FDDB dataset.

Comparison results of LHP with the state-of-the-art algo-
rithms on FDDB dataset are shown in Figure 4. Even though
some state-of-the-art results [23, 24, 21] performed slightly
better than LHP, it should be emphasized that they considered
several face detectors for multi-view face detection [21] or
trained detectors on multi-view face examples [23, 24], while
we only considered a single face detector for frontal faces.
Our method showed the best performance among frontal
detectors, and even outperformed other recent results using
multi-view face detectors [25, 26].

4. CONCLUSION

In this paper, we have presented the proposed LHP and the lo-
cal greedy algorithm for extracting LHP. The LHP is designed
by a combination of the most discriminative bits from a can-
didate BLPF pool consisting of LBP, LGP, and MLBP. In the
LHP generation process, the bits of LHP are initialized into
one of the BLPFs and are iteratively updated by replacing the
least discriminative bit with the most discriminative bit from
all the candidate BLPFs. The proposed LHP is guaranteed
to give smaller empirical error than any previously proposed
combination of BLPFs considered in the pool, with only a
small increase in computation. Experimental comparison on
MIT+CMU and FDDB benchmark datasets for different sets
of features consistently show that the LHP performs better
than previously proposed features and combination methods
under the AdaBoost face detection framework.
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