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ABSTRACT
This paper addresses the problem of salient object detection.
We introduce a novel framework which aims to automatically
identify salient regions in natural images based on two key
ideas. The first one is to consider the statistical spatial dis-
tribution of saliency and non-saliency regions as two comple-
mentary processes. The second one is based on the assump-
tion that contrast saliency with respect to background regions
outperforms those with respect to entire image. Experimental
results demonstrate the effectiveness of our approach over 12
state-of-the-art models.

Index Terms— salient object detection, background con-
trast, spatial distribution

1. INTRODUCTION

Traditional image analysis processes often scan the image ex-
haustively, looking for familiar objects/regions of different lo-
cation and size. This process can be implemented much more
efficient if an attention mechanism assigns priorities to im-
portant image parts, leading to the challenging problem of
salient object detection that is an important function for com-
puter vision and image processing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
According to whether the detection procedure requires hu-
man interaction or not, existing methods are divided into two
categories: bottom-up (unsupervised) and top-down (super-
vised) approaches. The first category usually determines the
saliency of a pixel based on low-level stimuli-driven features
without any prior of the salient region or object [4, 5, 11]. On
the contrary, the second one often describes the saliency by
the visual knowledge constructed from the training process,
and then use such knowledge for saliency detection on the
test images [12, 13, 14].

Recent research has shown that the computational mod-
els based on bottom-up methods are quite successful and very
suitable to extend to large scale datasets. Results from percep-
tual research [15, 16] and previous approaches [6, 7, 17, 18]
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Fig. 1. Overview of the main steps of our method. White
represents high saliency, while black indicates low saliency.
(Best viewed in color)

indicate that the most influential factor in bottom-up visual
saliency is contrast. The definition of contrast in previous
works is mainly based on different types of image features,
such as color variation, edges and gradients [4], spectral anal-
ysis [19], histograms [20], multi-scale descriptors [13], or
combinations thereof [5, 21]. Both types of methods tend to
rely solely on the local center-surround contrast [4, 13] or the
global contrast [20, 22] with respect to the entire scene for
estimating the saliency. However, we argue that the contrast
based on background regions also plays an important role in
this process. Furthermore, by exploring the statistical spatial
distribution of salient and background regions, we found that
the salient object regions tend to be more compact than the
background regions.

In this paper, we introduce a bottom-up saliency detec-
tion framework using the contrast with respect to a series of
background candidate regions. Fig. 1 outlines the proposed
method, which differs significantly from previous methods in
its motivation and methodology. The input image is first over-
segmented into a series of homogeneous segments. Since the
background regions often occupy large image areas, and al-
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ways stretch until the edge of the image, we generate the
background saliency maps, as illustrated in Fig. 1(c), with
regions far away from image center are assigned high back-
ground saliency value. In addition to the ability to encode
background saliency using the spatial distribution of back-
ground regions, as will be seen, another advantage of our
method is that it also adopts color contrast and compactness
to encode foreground saliency. After a set of background can-
didate regions are abstracted based on background saliency
map, the color contrast saliency, as shown in Fig. 1(d), is
created by computing the contrast of one segments with re-
spect to these background regions. The compactness saliency
is produced according to gestalt laws, indicating the regions
with regular shape tend to be more salient, otherwise not.
We obtain the final saliency map by incorporating these three
saliency maps, as shown in Fig. 1(f).

We evaluated our methods on publicly available bench-
mark dataset [13], and compared with 12 main-stream state-
of-the-art saliency models [4, 12, 18, 19, 20, 22, 23, 24, 25,
26, 27] as well as with manually produced ground truth anno-
tations. The experimental results demonstrate the effective-
ness of our method for the task of salient object detection.

2. THE APPROACH

In this section, we first introduce image representation using
over-segmentation technique, and then elaborate on the de-
tails of our saliency measurement.

2.1. Image Representation

As shown in Fig. 1(b), our first step is to form a set of seg-
ments from raw pixel intensities of original image. These seg-
ments correspond to small, homogeneous regions with accu-
rate boundaries in the image, and have been found useful for
salient object detection by other researchers [18, 20, 23].

The input images are first converted to the perceptually
uniform CIELab color space, and then convolved with a 17-
dimensional filter-bank, which consists of a series of Gaus-
sian, derivatives of Gaussian and Laplacian of Gaussian fil-
ters. We employ the Euclidean-distance K-means clustering
algorithm [28] to perform unsupervised clustering. Finally,
each pixel is assigned to the nearest cluster center to generate
an over-segmented image. Although those segmented regions
tend to be highly irregular in size and shape, the advantage
of this technique is that it can often group large homogeneous
regions with similar appearance while dividing heterogeneous
regions into many smaller ones.

2.2. Measuring Visual Saliency

Our method is based on three saliency operations, namely,
background saliency, color contrast saliency, and compact-
ness saliency. These three saliency maps are consolidated to
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Fig. 2. Illustration of background saliency. (a) original image;
(b) over-segmented image; (c) one background region; (d)
spatial filtered distribution of the background region in hor-
izontal (above) and vertical (below) direction, where the band
suppression filter, spatial distribution, and filtered distribution
are plotted as green, blue, and red dash line, respectively; (e)
background saliency map. (Best viewed in color)

predict final saliency. Note at each stage, maps are normal-
ized before integration.

Background saliency (BS). Given an input image I with
size W × H as illustrated in Fig. 2(a), where W and H are
image width and height, respectively. We first establish the
coordinate system with respect to up-left point of image as
coordinate origin, and the horizontal and vertical directions
denote x-axis and y-axis, respectively. Then a band suppres-
sion filter (BSF) Fh(x,W ) in x-axis is defined as:

Fh(x,W ) = τ × (
1√

1 + (xη )
2
+

1√
1 + (x−Wη )2

) (1)

where x is the x-coordinate. The parameter τ controls the up-
per bound and η controls the shape of the BSF, and Fv(y,H)
in y-axis is similarly defined. For one specific region ri, as
shown in Fig. 2(c), which containsL pixels indexed by (x, y),
we can compute the normalized spatial distribution DBri(x)
and DBri(y) for ri by counting the number of pixels with coor-
dinate x and y in two axis, respectively. Then the background
saliency is defined as the average weighted filtered responses
among all pixels in ri:

SBS(ri) =
1

L
(
∑
x

DBri(x)× Fh(x,W )+∑
y

DBri(y)× Fv(y,H))
(2)

Thus, those large homogenous regions far away from image
center will be assigned more saliency value than the center
regions, as displayed in Fig. 2(e).

Color contrast saliency (CCS). It often happens that
salient object may not perfectly locate in the center of image,
while the color of object regions is still quite different with
respect to the entire scene. Instead of computing saliency
based on entire image [20], here we calculate the contrast
based on background candidate regions. Thanks to the BS,
we can choose the regions with relative higher saliency and
lager size as robust background candidates.
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Fig. 3. Illustration of color contrast saliency. Whether salient
regions are homogenous or heterogeneous, CCS always as-
signs correct saliency that intuitively reflects human attention.

Let {B1, B2, · · · , BN} be selected background candidate
regions. Then we calculate the color contrast saliency (CCS)
in RGB color space for segment ri as:

SCCS(ri) =
N∏
j=1

fj , fj = max{dRj , dGj , dBj } (3)

where dRj = (cR(ri)− cR(Bj))2, dGj = (cG(ri)− cG(Bj))2,
and dBj = (cB(ri)− cB(Bj))2. Here cR(·), cG(·), and cB(·)
denote the mean color in RGB channel, respectively. From
Eqn. (3), if a region has great color difference in one channel
with respect to background regions, the above product will get
a large value leading to high contrast saliency for that region
overall. Fig. 3 illustrates the results of calculating CCS.

Compactness saliency (CS). Intuitively, the background
regions will be distributed over the entire image exhibiting a
high spatial variance, whereas foreground objects are gener-
ally more compact with regular region shape [12, 13]. This
local property allows us to define compactness saliency (CS),
which renders image segments more saliency when they are
grouped in a particular image region rather than evenly dis-
tributed over large image area. Instead of computing com-
pactness in RGB feature space [18], we prefer to calculate it
in location feature space:

SCS(ri) = L(
∑
x

DFri(x)× Nh(x, µi, σi)+∑
y

DFri(y)× Nv(y, µi, σi))
(4)

where L is the number of pixels belonging to ri, DFri(x) and
DFri(y) are, respectively, the pixel number distribution of ri in
x-axis and y-axis, as the blue dash line shown in Fig. 4(d).
N(·) denotes the Gaussian kernel with parameter µi and σi,
where µi is the center location of minimum bounding box
containing ri, and σi is set as min{W,H}.

Combined saliency. We assume that the three measure-
ments are independent, and start by normalizing BS, CCS,
and CS to the range [0, 1]. In practice, we found that BS to be
of higher significance and discriminative power to represent
backgrounds. Therefore, we use an exponential function in
order to emphasize foreground saliency (FS) as:

SFS(ri) = exp{−α · SBS(ri)} (5)
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Fig. 4. Illustration of compactness saliency. (a) original im-
age; (b) over-segmented image; (c) one specific foreground
region; (d) spatial filtered distribution of the foreground re-
gion in horizontal (above) and vertical (below) direction,
where the Gaussian filter, spatial distribution, and filtered dis-
tribution are plotted as green, blue, and red dash line, respec-
tively; (e) Compactness saliency map. (Best viewed in color)

where α is the scaling factor.
In our experiments, using only the CCS and CS may high-

light some background regions (as shown in Fig. 1) resulting
in the incorrect saliency assignment. To remedy this short-
coming, we modify them by multiplying FS to eliminate the
influence of backgrounds:

S′CCS(ri) = SCCS(ri) · SFS(ri)
S′CS(ri) = SCS(ri) · SFS(ri)

(6)

The final saliency map is then defined as:

S(ri) = S′CCS(ri) · S′CS(ri) (7)

The saliency map S(ri) is normalized to a fixed range [0, 255],
and each image pixel belonging to ri is assigned a saliency
value as S(ri).

3. EXPERIMENTAL RESULTS

This section evaluate the effectiveness of our method.
Datasets. We test our proposed model on Microsoft Research
Asia (MSRA) 1000 dataset [22], which contains 1000 images
with resolution of approximate 400×300 or 300×400 pixels,
and provides accurate object-contour-based ground truth.
Baselines. We selected 12 state-of-the-art models as base-
lines for comparison, including spectral residual saliency
(SR [19]), spatiotemporal cues (LC [27]), attention measure
(IT [4]), graph-based saliency (GB [25]), frequency-tuned
saliency (FT [22]), saliency segmentation (AC [26]), context-
aware saliency (CA [12]), global-contrast saliency (HC and
RC [20]), saliency filter (SF [18]), low rank matrix recovery
(LRMR [23]), and nature statistic saliency (SUN [24]).
Overall Results. The parameters are set as K = 6, α = 10,
τ = 0.6 and η = 0.19, empirically, and we implemented
all the 12 state-of-the-art models using a Dual Core 2.6 GHz
machine with 4GB memory to generate saliency maps. The
precision-recall curve (PRC) and F-measure[22] are illus-
trated in Fig. 5. It clearly shows that our method outperforms
other approaches. It is interesting to note that the minimum
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Fig. 5. Quantitative comparison for all methods with naive thresholding of saliency maps. Left and middle: PRC of our method
compared with CA [12], AC [26], IT [4], LC [27], SR [19], GB [25], SF [18], LRMR [23], FT [22], SUN [24], HC and RC [20].
Right: Average precision, recall and F-measure with adaptive-thresholding segmentation. Our method shows high precision,
recall, and Fβ values over the MSRA 1000 dataset. (Best viewed in color)
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Fig. 6. Visual comparison of previous approaches with our method. See the legend of Fig. 5 for the references to all methods.

recall value of our methods starts from 0.53, and the corre-
sponding precision is higher than those of the other methods.
This probably because the saliency maps computed by our
methods contain more pixels with the saliency value 255.
Visual comparison with different methods is shown in Fig. 6.
Our method generates uniformly highlighted salient regions,
and produces saliency maps closest to the ground truth.

4. CONCLUSION AND FUTURE WORK

In this paper, we present a novel model to encode contrast
with respect to background candidate regions for saliency de-
tection. The key advantages of our method are: (1) candidate

regions can be automatically produced according to the spa-
tial distribution of backgrounds; (2) using the contrast with re-
spect to backgrounds makes our method more robust than the
methods computing contrast with respect to the entire image;
(3) the compact measurement of region regularity plays an
important role in improving the performance. Our method has
been tested on MSRA 1000 dataset, and the results demon-
strate the effectiveness of our approach on nature images.

There are two areas that we would like to improve upon.
The first one is incorporating top-down priors to further im-
prove the performance, as well as recent work [23] does. We
are also interested in extending our model to predict region
saliency in spatio-temporal domain (e.g., video sequence).
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