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ABSTRACT In [8], distributed compressed sensing and joint decod-
ing algorithm is used for satellite image reconstructioor F

Compressed sensing (CS) is the theory and practice of SURyo-view reconstruction scenario, [9] proposed to utilize
Nyquist sampling of sparse signals of interest. Perfect repiock discrete cosine transform (DCT) and the disparity-
const_ruction may then be possible wit_h much fewer tha_n th%ompensated view difference as the sparse penalty. Althoug
Nyquist required number of data. In this paper, we consider 8ignal sparsity is increased, the algorithm did not achieve
distributed multi-view imaging system where each camera atompetitive reconstruction quality due to the poor DCT ba-
a differentlocation performs independent compressedsgns sjs_ |n [10], the decoder predicts a single view from inigial
acquisition of the target scene. At the decoder, we proposeconstructed neighbor view(s) via disparity compensatio
disparity-compensated total-variation (TV) minimizatial-  (pc), then the sparse residue is recovered by two-dimeasion
gorithm to jointly reconstruct the multiple views. EXpeBm  tota|-variation (2D-TV) minimization, and is added back to
tal results show that the proposed joint decoding algorithmye prediction. Although the algorithm achieves superar r
outperforms significantly independent-view decoding a we construction quality after a few iterations, it does notsider
as disparity-compensated residue-view reconstructigo-al spatial sparsity in the residue-view recovery stage.

rithm. In this paper, we propose a disparity-compensated multi-

Index Terms— Compressed Sensing’ multi-view imag_ view TV minimization algorithm to J0|nt|y recover all the

ing, sparse representation, total-variation minimizatidis-  views from independent compressive samples. Initiallghea
parity compensation view is reconstructed individually via 2D-TV minimization

A group of disparity maps are then estimated from the ini-
tial reconstructions, and a prediction model is estabtishe
1. INTRODUCTION which each view is predicted by its neighbor view(s). In the
joint decoding stage, all views are recovered simultangous
Multi-view images are captured by a network of cameras disusing the sum-up of each view's 2D-TV and each residue
tributed in a 3D scene. Compared to conventional 2D imagesjew’s 2D-TV as the sparse constraint.
multi-view images offer a richer description of the capture The remainder of this paper is organized as follows. In
scene because they convey both the texture and the 3D sceBection 2, our simple CS encoder is introduced. In Section
information. Multi-view imaging has found usage in applica 3, the proposed disparity-compensated joint-view TV mini-
tions such as surveillance, 3D television and robotics [1].  mization decoder is developed. Experimental results and pe
In multi-view imaging systems, it is feasible to measureformance analysis are presented in Section 4. Finally, a few
the raw data at each sensor, but joint, collaborative comeonclusions are drawn in Section 5.
pression of that data among the sensors would require costly
communication. Recently, inspired by distributed souim#-c
ing (DSC) [2] and compressed sensing (CS) [3]-[5], CS basedz' A SIMPLE COMPRESSED SENSING ENCODER
distributed multi-view imaging systems have been proposed
In such systems, each camera independently captures and

compresses one view of the scene by taking a small num|_ ™" "™ | vecorizaion | X, € %" _| Mesrement | y, ¢ %7 : YD
of (random [5] or deterministic [6]) linear measurements X, € ®"" VO | N=mxn

and high quality reconstruction of the multi-view images is

achievable by exploiting multi-view image sparsity at the

decoder. Typically, joint signal sparsity model is eststidid ~ Fig. 1. Compressive sensing at the camera with quantiza-
and the reconstruction problem can be solved via convetion alphabeD.

optimization [7].
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In this paper, we propose a practical CS multi-view imageSimilarly, for 1 < k < K, the geometry relation between
acquisition system that performs pure, direct CS encoding. the base viewk; and its right reference vie&; can be
the simple encoder block diagram shown in Fig. 1, M  described with disparity marl’,j*l, such that every pixel
view X, of sizem x n is viewed as a vectorized column Z. (i, j) in the base view can be predicted by a matching
x; = V(Xz) € RY, N = mn. Compressive sampling is pointin its right neighbok ; in the form of
performed by projecting; onto aP x N random measure-
ment matrix®, TR (i, 4) = Trra (i, § — A1 (6, 9)). 4)

Vi = Pxg, 1) . . o
In this work, we only consider the case that multi-view

where® is generated by randomly permuting the columnsmages are rectified. For efficient disparity estimation, we
of an orderg, ¢ > N and multiple-of-four, Walsh-Hadamard adopt a two-stage algorithm. In the first stage, a group of
(WH) matrix followed by arbitrary selection df rows from  coarse disparity maps are generated via local block-ntagchi
theq available WH rows (i > NV, only V arbitrary columns |y the second stage, the coarse disparity maps are used to
are utilized). This class of WH measurement matrices has th@&mpute the mutual information, which is then considered as
advantage of easy implementation (antipatlalentries), fast  the matching cost in the semi-global stereo matching algo-
transformation, and satisfactory reconstruction pertomg®.  yjthm [13] that further refines the disparity maps.
To quantize the elements of the resulting measurementivecto  aAfter the disparity maps are obtained, a prediction model
yr € R” (block Q in Fig. 1), in this work we follow a Sim-  for each view in the group of multi-view images can be estab-
ple adaptive quantization approach of two codeword lengthsished via DC as shown in Fig. 2. Far< k& < K — 1, xx
A positive thresholdy, > 0 is chosen such that of the  can be predicted from its left and right adjacent views ;

elements iny;, have magnitude al_)OVﬁ_. For every measure- andx;, . The prediction for pixeky (i, j) in x; is given by
ment vectoty, k = 1,2, ..., 16-bit uniform scalar quantiza-

tion is used for elements with magnitudes larger thamand

1 1
ey o P(iy§) = map_1 (i, jHdr (i, §))+5 L j—dit (i, g
8-bit uniform scalar quantization is used for the remairghg 2k (i, 7) 9k 10 g+ (Z’J))+2Ik“(l’J e (69))

ements. The resulting quantized valggsare then indexed b ] (5)
and transmitted to the decoder. Fork = 1andk = K, 2.(i, j) can be predicted by
3. DISPARITY-COMPENSATED JOINT DECODER i) {xk+1(i,j _ dZJrl(,L-’j))’ k=1, ©
k yJ) = .. k—1/. - _
3.1. Initial Decoding er-1(, 7 + 4y~ (6,)), k=K.

Initially, multi-view images are reconstructed indepemiie  In matrix form, the predicted™ view x}, with 2 (i, j) as its
from their individual de-quantized CS measureméntssia (4, j)'" element is given by
2D-TV minimization [11], [12] namely,

D]]z+1xk+17 k= 1,
~ . ~ 9 P _ ) 1yk+1 1yk—1
%) = argmin <|yk — ®x|3 + anGxul), @ X =43Di x + 3D xer, 2SR <K -1
X
Df'xy_1, k=K,
where the linear transform matr{% operates on the vector- (7)

ized imagex = V(X) and generates a vector consisted ofvhereD; ™! andD;" are the DC operators that lead to the
horizontal gradient values; ; — z; ;_; and vertical gradient expressions in (5) and (6).
valuesr; ; — x;—1,; over all pixels in imag& € R™*",

3.2. Disparity Compensation

After the initial reconstruction of all view&,, k = 1,..., K
are obtained, they are used to estimate a group of dispari
maps. Let thé" view X, be the base view, < k < K, then
the geometry relation betweeéty and its left neighbok;, 1
can be described with a disparity md@_l, where the sub-
script k& represents the base view index, and the superscri Pk P

k — 1 represents the reference view index. With the aid of

d’,j‘l, every pixelzy (4, j) in X; can be predicted by a match- Fig. 2. lllustration of disparity compensation (DC) whé&h=
ing point inx;,_1 in the following form 4.

#h(i,4) = Te—1(i,j + dy 1 (3, 4))- (3)

1459



3.3. Joint Decoding 4. EXPERIMENTAL RESULTS

When adjacent views are highly correlated and disparitysnap, this section, we experimentally study the performance of
are accurate enough, the residue between original ¥igw the proposed disparity-compensated joint multi-view imag
and its predictiongy, i.e., Xk — x;, also has small 2D-TV.  gecoder by evaluating the perceptual quality as well as the
Hence, we propose to combine the 2D-TV of individual viewspeak signal-to-noise ratio (PSNR) of reconstructed images
and the 2D-TV of .DC residues as the sparse-inducing penaltyyo data setsArt andDoll, with a resolution o870 x 463
in the reconstruction problem. pixels are used. Each data set contgimsctified views. Pro-
Consider a group of viewsx = [x{,...,x]|". The  cessingis carried out only on the luminance component.
observed CS measurements at the decoder can be modeled asat our trivial, pure CS encoder side, each view is han-
dled as a vectorized column of lengti = 171310 mul-
tiplied by a P x N randomized partial WH matrix®.
The sensing matrix® is generated only once to encode
all views in each data set. The elements of the captured
P-dimensional measurement vector are quantized and then
transmitted to the decoder. In our experiments, the CS ratio
P — diag{® ... @), © % = 0.12530.25,0.375,0.5,0.625 are used to produce the
corresponding rate$.01,2.02, 3.03, 4.04, and 5.05 bits per

andn is the quantization noise. The view residue after DCPiXel (bpp)*. At the decoder side, afl views in each data

y = ®x +n, 8)

wherey is the concatenation df de-quantized measurement
vectorsyy, k = 1, ..., K, ® is the block diagonal matrix with
K diagonal elements

operation is set are jointly reconstructed by the proposed joint deapdin
algorithm. In our experimental studies, three reconsioact
BRI -D? Mxq ] algorithms are examinedi)the proposed DC joint decoder;
f, —%D% 1 —%D% X (i) the DC residue-view decoder [10]; afid) the indepen-
. . dent decoder that recovers each individual view via 2D-TV
e ey N |, minimization.
k —5Dy, I —5Dp Xk
x| [ -DET 1f|xk]
~—— S~
Af AD Lx

whereD is the DC operator for the group &f views. If the
disparity estimation is accurate enoudh shall have spars
2D-TV, which can be utilized to enhance the sparse re
sentation for multi-view image reconstruction. The ressot
reconstruction problem can be formulated as (a) (b)

% = argmin |§ — ®x||3 + au[|Gx|1 + a2 GDx]l1, (10)

whereG is the block diagonal matrix with the gradient og
atorG as theK diagonal elements

G =diag{G ... G}. (11)

At first, problem (10) is converted into an equivalent v
ant through variable splitting technique by introducingiét (c) (d)
iary variablesw andu:
~ Fig. 3. Reconstruction of th&™® view of Art data set: (a)
x = argmin ||y — ®x|3 + ca|lwls +azflulli  (12)  original view; (b) proposed DC joint decoder; (c) DC residue
decoder [10]; and (d) independent decoqér:é 0.25).
subject to Gx = w, GDx = u.

Then, the problem in (12) can be formulated as minimizing an

a_Ugm.ented Lagrangian function, and solved by the altmgati 1Considering the quantization scheme described in Sectitredit rate
direction method (ADM) [14],[15]. can be calculated g46 x 0.01P + 8 x 0.99P)/N bpp.
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quality differences between Fig. 3 (b) and (c) are not pro-
nounced in the pdf formatting, Fig. 4 shows quantitatively
around 1.5 dB PSNR improvement of the proposed DC joint
decoder compared with the DC residue decoder, and around
4 dB PSNR improvement compared to the independent view
decoder at median-to-high bit rates. Similar conclusiars ¢
be drawn from Figs. 5 and 6 for th2oll data set.

5. CONCLUSIONS

We proposed a joint reconstruction algorithm for distréulit
compressed-sensed multi-view images. Initially, eaclvvie
is independently recovered via 2D-TV minimization. After-
wards, a set of disparity maps are estimated from the initial
reconstructions, and utilized in the disparity-compesdat/
minimization stage for joint-view reconstruction. Expeéan-

tal studies demonstrate that our proposed decoding aigorit
outperforms significantly the independent view decoder, as
well as the disparity-compensated residue-view decoder.

Fig. 5. Reconstruction of tha*® view of Doll data set: (a)
original view; (b) proposed DC joint decoder; (c) DC residue
decoder [10]; and (d) independent decoq@r:é 0.25). 6. REFERENCES
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