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ABSTRACT
We consider the motion-compensated temporal prediction
loop at the heart of modern video coders. Rather than using
motion-compensated reference frame blocks directly as pre-
dictors, we incorporate their spatially-filtered versions into
the prediction loop. We design adaptive filters that are geared
toward successful prediction over sophisticated temporal evo-
lutions involving lighting changes, focus changes, structured
noise, and so on. The spatially and temporally varying nature
of such video evolutions requires the learning and transmis-
sion of many filters, necessitating parameter reduction for
compression and related applications. Unlike earlier work
that tries to limit parameters by using a small set of general
filters, or by restricting to symmetric filters, etc., we propose a
novel parametrization of filters in terms of a set of base-filter
kernels and modulation weights. Given a filter dictionary of
K-tap filters, our work can be seen as providing a reduced-
rank, prediction-optimal approximation of this dictionary that
represents its filters with K ′ << K parameters.

Index Terms— low rank decompositions, prediction fil-
ter, inter-picture prediction, HEVC, VP9

1. INTRODUCTION
Video sequences exhibit many types of temporal evolutions
that fall outside of the white noise displaced-frame-difference
model. Researchers have thus devised many different spatio-
temporal formulations that estimate statistical dependencies
and form associated predictors [1, 7, 13, 2, 12]. Since the
highly transient nature of video evolutions makes learning
of densely parameterized models difficult, established tech-
niques concentrate on simplified transitions and derive prac-
tical pel-recursive estimators, Kalman, and Wiener filters [1,
14, 7, 8, 13]. Other pixel-domain formulations focus on inter-
polation errors, aliasing errors, and specific forms of bright-
ness changes [3, 19, 18, 6, 9].

Motivated by transform domain sparsity, [5] has proposed
inter-picture prediction in transform-domain that showcases
high performance results over a wide variety of evolutions.
With data sparsifying transforms providing the main statis-
tical modeling, simple predictors in transform domain are
shown to be adequate for many evolutions. When using lo-
calized transforms and translation invariant decompositions

the authors can show spatial filtering analogues to their work
in terms of filters defined via the transform basis.

The work we present in this paper can be seen as unify-
ing the aforementioned pixel and transform domain motivated
work through an adaptive filter parametrization and an asso-
ciated optimization process. Formulating inter-picture pre-
diction as the spatially adaptive filtering of a reference pic-
ture to estimate the picture to be predicted, we propose filters
with reduced parametrizations that preserve a high degree of
adaptivity. Our work optimally discovers the form of reduced
parameterizations that in cases may result in symmetric filters
(reduced number of unique tap values), frequency constrained
filters (reduced number of unique frequency parameters), etc.
In effect, we design the optimal linear reduction ofK-tap pre-
diction filters to filters described by K ′ parameters and deter-
mine whether this parameterization should be in pixel-domain
(e.g., in terms of tap values) or in transform domain (e.g., in
terms of a predefined transform basis), and so on.

The outline of the paper is as follows. Section 2 discusses
the basic ideas and defines the condensed prediction filters.
A joint optimization framework for the base filter kernels and
modulation weights is provided in Section 3. Section 4 dis-
cusses simulation results and concludes the paper.

2. BASIC IDEAS
2.1. Inter-Picture Evolution Model
Let Y denote the current video frame. Consider the motion
compensated prediction of Y using the previously decoded
reference frame X as employed in modern video coders [10,
17, 11]. For convenience of notation concentrate on block y
from Y which is matched via motion estimation to block x
from X 1. Assume that x and y are lexicographically ordered
into (N × 1) vectors. With some abuse of notation let f ∗ x
be the vector that is formed by lexicographically ordering the
convolution of the filter f with block x. In this paper we are
interested in the temporal evolution model,

y = f ∗ x+ w, (1)
1Later sections will incorporate the proposed work within the motion es-

timation loop. For the time being assume that motion is adequately com-
pensated for and x is of appropriate size to allow correctly filtered values at
boundaries. Assume also that any needed de-blocking on the reference frame
has already been accomplished.

1428978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



where f is a 2D linear filter and w is white noise.
Observe that while (1) appears to be a “limited linear”

model, when one considers the adaptivity provided by f and
the block size, it becomes clear that the model is very gen-
eral and can accomplish most temporal evolutions with ease2.
Hence, in order to make the problem more concrete, con-
sider the filter dictionary F = {f1, . . . , fM} and the triplet
(y, x, I) so that,

I = m ⇒ y = fm ∗ x+ w. (2)

Assume that the filters in F have K taps. The convolution in
(2) can be written as a sequence of scalar products of fm with
overlapping regions in x. Assume each such region is lexico-
graphically ordered into a vector and the resulting vectors are
transposed and collected into the rows of the matrix X . The
model can now be stated as,

I = m ⇒ y = Xfm + w. (3)

2.2. Reduced-Rank Parametrization

Let G be the (K×K ′) base filter kernel matrix withK ′ ≤ K.
In this paper we approximate the K-tap filter fm via

fm → Gcm, (4)

where cm is the (K ′ × 1) modulation weight vector. Observe
that symmetric filters are obtained if the filters corresponding
to columns of G are symmetric, and likewise transform-based
filters result when G’s columns are defined using transform
basis, etc. It is hence clear that a framework that finds the
optimal base filter kernels also determines the form of the op-
timal parameter reduction.

Let F be the (K ×M) matrix whose mth column is fm.
Similarly let C be the (K ′ ×M) matrix whose mth column
is cm. With the above parametrization it is clear that

F → GC, (5)

i.e., the prediction filter dictionary is approximated using a
reduced rank decomposition. We call the resulting dictionary
the condensed filter dictionary and will refer to the filters as
condensed prediction filters (CPF).

2.3. Scaling the Factorization

Since the condensed dictionary is in the form of a factor-
ization, multiplying C by an invertible matrix results in the
same CPFs if G is multiplied with the inverse matrix, i.e.,
GC = (GS−1)(SC). In a typical application G is fixed or
changed infrequently while C provides adaptation. It is hence
convenient to scale based on properties desired of C.

One such property is that each column of C should be as
decorrelated as possible so that the modulation weights can
be transmitted with few bits. This can be accomplished by
setting S to be the Karhunen-Loeve Transform obtained by

2In particular note that in the trivial but conceptually important limit of a
single-pixel block, one can derive an adaptive single-tap filter f = (y−w)/x
allowing perfect prediction for x 6= 0.

the eigen-decomposition of CCT . A better alternative is to
set S to be the Sparse Orthonormal Transform [16, 15] in
order to ensure each column of C has the fewest number of
non-zero values. One can also scale the base filter modulation
kernels or the modulation weights to have unit norm.

2.4. Spatial Variation

Similar to the block-motion field assumptions prevalent in
video coding, in this paper we assume that the filters are de-
fined with the aid of a block-evolution field that assigns a filter
parameter to blocks in Y . Hence I is assumed to be defined
over spatial blocks, assigning filters to blocks of varying sizes.
Part of the task of the proposed work will be to identify this
block decomposition and the filter dictionary.

3. OPTIMIZATION OF CPF

3.1. Optimizing Modulation Weights

Consider the model in (3) with I = m so that y = Xfm +w.
Assume zero-mean quantities and let E[.|m] = E[.|I = m]
denote expectation conditioned on I = m. Bold upper-case
letters denote matrices. The conditional mean squared error
(mse) is given by,

E[||y −XGcm||22|m] = E[yT y|m]−
2E[yTX|m]Gcm + cTmGTE[XTX|m]Gcm. (6)

Minimizing (6) in terms of the modulation weights, we obtain

GTE[XT y|m] = GTE[XTX|m]Gcm. (7)

Observe that since the noise is white we have

E[XT y|m] = E[XTX|m]fm. (8)

Assume thatE[XTX|m] is independent ofm so that the x, y
dependency is primarily in terms of fm, i.e.,

E[XTX|m] = E[XTX] = R, (9)
E[XT y|m] = Rfm. (10)

This is a reasonable assumption since the temporal change
to the next frame, captured by fm, is typically independent
of the reference frame statistics. For example, the same ref-
erence block can be imagined to undergo different lighting
changes, different focus changes, etc., with the said changes
independent of its statistics. Using matrix notation to accom-
modate m = 1, . . . ,M , (7) becomes,

GTRF = GTRGC. (11)

3.2. Optimizing Base Filter Kernels

Plugging (7) into the conditional mse in (6) we obtain,

E[||y −XGcm||22|m] = E[yT y|m]− fTmRGcm. (12)
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Assume without loss of generality that different filters are
equally likely. The overall mse then becomes

E[E[||y −XGcm||22|m]]

= E[yT y]− 1

M

∑
m

fTmRGcm,

= E[yT y]− 1

M
Tr[F TRGC], (13)

where Tr[.] denotes the trace of a matrix. The optimal base
filter kernels are thus obtained as the G that maximizes
Tr[F TRGC] subject to (11).

3.3. Joint Optimization

The joint optimization problem can now be stated as

max
G,C

Tr[F TRGC] subject to GTRF = GTRGC. (14)

Since the CPF is given by the GC product it is clear that one
can scale the rows of C and inverse scale the columns of G
to arrive at the same filters. Suppose C is scaled so that it has
unit energy rows. The below proposition is straightforward.

Proposition 3.1 Suppose C has unit energy rows. Then,
maxC Tr[AC] = maxC Tr[CA] is obtained via

C = DAT , (15)

Di,j =

{
1/(
∑

k(Ak,i)
2)1/2 i = j,

0 i 6= j.
(16)

Using Proposition 3.1 with (14) we have that the optimal
C = DGTRF , with D obtained using the proposition (A =
F TRG), provided that the constraint GTRF = GTRGC
can be satisfied. Let us now see that this is the case.

With the above optimal C the constraint in (14) becomes

GTRF = GTRGDGTRF ,

G̃TRF = G̃TRG̃G̃TRF , (17)

where G̃ = GD1/2. Suppose G̃TRF is full rank. Then the
constraint is satisfied provided that G̃TRG̃ = 1, where 1 is
the (K ′ ×K ′) identity. Since R = E[XTX] is a covariance
matrix, let R = V ΛV T be its eigen decomposition with or-
thonormal V of eigenvectors and diagonal Λ of eigenvalues.
In order to meet the constraint we hence need

1 = G̃TRG̃ = G̃TV TΛV T G̃,

which leads to

Λ1/2V T G̃ = H, (18)

where H is a (K ×K ′) matrix having orthonormal columns.
Plugging into the trace expression in (14) results in the trace

Tr[F TRG̃G̃TRF ]

= Tr[F TV Λ1/2HHTΛ1/2V TF ]

= Tr[HTΛ1/2V TFF TV Λ1/2H]. (19)

The following straightforward proposition summarizes the re-
sult that we need.

Proposition 3.2 Suppose Q (K × K) is a symmetric pos-
itive semi-definite matrix. Let Q = WΓW T be its eigen
decomposition with the diagonal Γ containing the eigenval-
ues in nonincreasing order, i.e., Γ(1, 1) ≥ Γ(2, 2) ≥ . . . ≥
Γ(K,K). Consider (K ×K ′) orthonormal matrices H with
K ′ ≤ K. Then

max
H

Tr[HTQH] =

K′∑
l=1

Γ(l, l), (20)

which can be accomplished by setting H(i, j) = V (i, j), i =
1, . . . ,K, j = 1, . . . ,K ′.

It is now easy to see that the H that maximizes (19) (up to
repeated eigenvalues) corresponds to the K ′ eigenvectors of,

Q = Λ1/2V TFF TV Λ1/2, (21)

that correspond to the largestK ′ eigenvalues. We hence have,

Proposition 3.3 Let R = V ΛV T be a (K×K) covariance
matrix and let F be a (K × M) bank of filters. Set Q =
Λ1/2V TFF TV Λ1/2. Let H (K ×K ′) be the eigenvectors
of Q that are associated with the largest K ′ eigenvalues. The
joint optimization problem in (14) is then solved using

G̃ = V Λ−1/2H,

GC = G̃G̃TRF . (22)

4. RESULTS
4.1. Implementation Details

We implemented our work within HEVC reference software
(HM-14.0) configured for low-delay (IPP...). Each prediction
unit (PU) of the reference software was modified to use the
proposed work so that reference frame blocks corresponding
to PUs (found using PU motion vectors) were filtered using
CPFs. As HEVC PUs can be considerably large we derived a
CPF quad-tree within each PU using CART-like tree-pruning
optimization. Each leaf-node of the CPF quad-tree is assigned
a modulation weight, c, and a CPF given by Gc. G is fixed
for the entire sequence. For the below results we constrained
G so that Gu = δ where u is the vector of all ones, and delta
is the 2-D impulse, i.e., x∗δ = x. This in effect allows for the
cases that require no filtering to be represented with c = u,
allowing the CPF to be “ON” for all PUs without requiring
the implementation of a “CPF ON/OFF” codec flag.

Given G, the optimal CPF quad-tree and the associated
modulation weights were determined by minimizing equa-
tions of the form,

min
c
||y −XGc||p + γ||c||1, (23)
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where p = 1 for SAE or p = 2 for SSE, and ||c||1 mea-
sures transmission filter rate by assuming a Laplacian model
for the quantized modulation weights. The filter rate as well
as the rate for specifying the quad-tree were added to the mo-
tion estimation optimization loop within HEVC. The decoder
applied filtering using the CPF, Gc, over decoded CPF quad-
trees. For the following results we determined a CPF quad-
tree using an initial Gdct (taken to be transform basis induced
filters introduced in [5] corresponding to (5 × 5) filters, i.e,
K = 25) and kept this quad-tree fixed. The prediction fil-
ter dictionary, F , required in our optimizations was obtained
through (10).

4.2. Simulations

Figure 1 illustrates the three test sequences we have used (100
frames, CIF). Both the movie trailer and the commercial con-
tain many lighting changes, cross-fades, and changes of fo-
cus. Commercial also contains significant noise-like tran-
sients (rain effects, etc.) Foreman has strong directional struc-
tures which typically lead to directional error patterns.

Fig. 1. Test sequences Trailer, Commercial, and Foreman.

We first study the displaced frame difference (DFD) dis-
tortion as a function of K ′ keeping the CPF quad-trees and
QP fixed. Figure 2 (a) shows DFD distortion for the above
three sequences. PSNR is calculated for the entire sequence
and normalized per-pixel. The points at K ′ = 0 correspond
to no filtering applied, whereas K ′ = 1 correspond to the im-
pulse filter multiplied by a scalar, in effect to pixel-based in-
tensity compensation. Observe that while intensity compen-
sation doesn’t provide much improvement, asK ′ is increased,
CPFs obtain significant gains. Note also that since the filter-
ing in spatial domain is 25-tap, i.e., K = 25, CPFs provide
very significant reduction in parameters for given distortion,
especially for K ′ = 4.

(a) (b)
Fig. 2. (a) DFD distortion as a function of K ′. (b) DFD
distortion as a function of filter rate for Foreman.

The parameter reduction K → K ′ is one way CPFs
provide compression. Figure 2 (b) illustrates the impact of
the derived CPFs on bit-rate for Foreman. The modulation
weights were scalar quantized using the codec’s transform
coefficient quantizer step-size, inverse scaled with the l2-
norm of each filtered reference block, i.e, each modulation
weight is thought of as a transform coefficient associated
with a basis that is the reference block filtered with the corre-
sponding base filter kernel (more elaborate quantization can
also be employed [4]). Entropy based on the aforementioned
Laplacian model measures rate. Observe again that CPFs (il-
lustrated in Figure 3) provide significant improvements with
marginal increases in rate, especially with K ′ = 4.

(a) GF , (K ′ = 4) (b) GF , (K ′ = 8)

Fig. 3. Fourier trf. magnitude of the kernels for Foreman.

(K ′ = 4) (K ′ = 8)
GT GC GF GT GC GF

Trailer 43.5 43.3 43.3 44.1 43.9 43.9
Commercial 30.5 30.7 30.4 30.8 30.9 30.7
Foreman 38.0 37.6 38.2 38.8 38.4 39.1

Table 1. Generalizability of the base filter kernels. The DFD
PSNR (dB) as a function of the utilized base filter kernels.

Let us now look at Table 1 which illustrates how the base
filter kernels specific to each sequence perform when used
in establishing the filtering for the others. This experiment
scrutinizes the feasibility of finding a universal G to be used
over a variety of temporal evolutions. For this purpose we
solve for a sequence specific C using the given G via (11). It
is clear that the base filter kernels readily translate from one
sequence to the next and most of the adaptivity is captured
through the modulation weights.

4.3. Conclusion

We proposed prediction-optimal, reduced-rank parametriza-
tions of filter dictionaries targeting inter-picture prediction.
Our work allows a high degree of filter adaptivity using few
parameters and obtains significant increases in DFD PSNR at
a given bit-rate. Experiments show that the derived optimal
base filter kernels provide a subspace which is generalizable
across video sequences and most of the filter adaptivity is ac-
complished by the modulation weights within this subspace.
Future work will concentrate on improved ways of encoding
the modulation weights and their across-PU prediction.
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